Skew Lines
CHF 39.60
Auf Lager
SKU
ISKVDCFAPE6
Geliefert zwischen Mi., 08.10.2025 und Do., 09.10.2025
Details
High Quality Content by WIKIPEDIA articles! If each line in a pair of skew lines is defined by two points, then these four points must not be coplanar, so they must be the vertices of a tetrahedron of nonzero volume; conversely, any two pairs of points defining a tetrahedron of nonzero volume also define a pair of skew lines. Therefore, a test of whether two pairs of points (a,b) and (c,d) define skew lines is to apply the formula for the volume of a tetrahedron, V = (1/6)· det(a b, b c, c d) , and testing whether the result is nonzero. If four points are chosen at random within a unit cube, they will almost surely define a pair of skew lines, because (after the first three points have been chosen) the fourth point will define a non-skew line if, and only if, it is coplanar with the first three points, and the plane through the first three points forms a subset of measure zero of the cube.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131165283
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131165283
- Format Fachbuch
- Titel Skew Lines
- Herausgeber Betascript Publishing
- Anzahl Seiten 68
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung