Slerp

CHF 37.45
Auf Lager
SKU
D9J1JLG1QR6
Stock 1 Verfügbar
Geliefert zwischen Mo., 19.01.2026 und Di., 20.01.2026

Details

High Quality Content by WIKIPEDIA articles! Slerp has a geometric formula independent of quaternions, and independent of the dimension of the space in which the arc is embedded. This formula, a symmetric weighted sum credited to Glenn Davis, is based on the fact that any point on the curve must be a linear combination of the ends. Let p0 and p1 be the first and last points of the arc, and let t be the parameter, 0 t 1. Compute as the angle subtended by the arc, so that cos = p0 p1, the n-dimensional dot product of the unit vectors from the origin to the ends. The geometric formula is then mathrm{Slerp}(p0,p1; t) = frac{sin {[(1-t)Omega}]}{sin Omega} p0 + frac{sin [tOmega]}{sin Omega} p1. The symmetry can be seen in the fact that Slerp(p0,p1;t) = Slerp(p1,p0;1 t). In the limit 0, this formula reduces to the corresponding symmetric formula for linear interpolation,mathrm{lerp}(p0,p1; t) = (1-t) p0 + t p1.,!

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131171772
    • Genre Technik
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Anzahl Seiten 72
    • EAN 9786131171772
    • Format Fachbuch
    • Titel Slerp
    • Herausgeber Betascript Publishing

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470