Social Web Artifacts for Boosting Recommenders

CHF 131.15
Auf Lager
SKU
MFFKDKTTI54
Stock 1 Verfügbar
Geliefert zwischen Do., 20.11.2025 und Fr., 21.11.2025

Details

This book presents approaches for exploiting the rapidly expanding fountain of Social Web knowledge by means of classification taxonomies and trust networks, which are used to improve the performance of product-focused recommender systems.


Recommender systems, software programs that learn from human behavior and make predictions of what products we are expected to appreciate and purchase, have become an integral part of our everyday life. They proliferate across electronic commerce around the globe and exist for virtually all sorts of consumable goods, such as books, movies, music, or clothes.

At the same time, a new evolution on the Web has started to take shape, commonly known as the Web 2.0 or the Social Web: Consumer-generated media has become rife, social networks have emerged and are pulling significant shares of Web traffic. In line with these developments, novel information and knowledge artifacts have become readily available on the Web, created by the collective effort of millions of people.

This textbook presents approaches to exploit the new Social Web fountain of knowledge, zeroing in first and foremost on two of those information artifacts, namely classification taxonomies and trust networks. These two are used to improve the performance of product-focused recommender systems: While classification taxonomies are appropriate means to fight the sparsity problem prevalent in many productive recommender systems, interpersonal trust ties when used as proxies for interest similarity are able to mitigate the recommenders' scalability problem.


Shows how to use Web Knowledge for Boosting Recommenders Presents trust and classification taxonomies for recommender systems Written by an expert in the field

Inhalt
Part I Laying Foundations.- Part II Use of Taxonomic Knowledge.- Part III Social Ties and Trust.- Part IV Amalgamating Taxonomies and Trust.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319032870
    • Genre Technology Encyclopedias
    • Auflage 2013
    • Lesemotiv Verstehen
    • Anzahl Seiten 208
    • Herausgeber Springer International Publishing
    • Größe H235mm x B155mm x T12mm
    • Jahr 2015
    • EAN 9783319032870
    • Format Kartonierter Einband
    • ISBN 3319032879
    • Veröffentlichung 16.05.2015
    • Titel Social Web Artifacts for Boosting Recommenders
    • Autor Cai-Nicolas Ziegler
    • Untertitel Theory and Implementation
    • Gewicht 324g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470