Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Socially Driven Multiagent Learning
Details
Machine learning techniques have become ubiquitous. We find them in our smart phones/watches, appliances, when we search the web, social networks and are even becoming mainstream in showing us personalized web content. However, little is known about the implications when two or more machine learning algorithms face each other. This textbook offers a comprehensive view of the problems faced when such algorithms share the same environment and some proposed solutions to alleviate such problems.
Autorentext
Enrique Munoz de Cote is a computer scientist at the Institute of Astrophysics, Optics and Electronics, Mexico. His research connects computer science and economic theory through machine learning and game theory. He has received different awards and is a member of the board of directors of the Association for Trading Agent Research (ATAR).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639763676
- Genre Maths
- Anzahl Seiten 164
- Herausgeber SPS
- Größe H220mm x B150mm x T11mm
- Jahr 2015
- EAN 9783639763676
- Format Kartonierter Einband
- ISBN 363976367X
- Veröffentlichung 14.11.2015
- Titel Socially Driven Multiagent Learning
- Autor Enrique Munoz De Cote
- Untertitel Social Outcomes and Strategies Impelled by Self-interests
- Gewicht 262g
- Sprache Englisch