Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Solar Power Forecasting Through Machine Intelligence
Details
Solar energy is a very promising and renewable form of energy that can fulfill a substantial amount of the world's energy needs. Nevertheless, the sporadic character of renewable energy sources, caused by variables like weather patterns and time of day, presents obstacles to consistent energy production and integration into the power system. To tackle these difficulties, this study suggests an innovative method that utilizes computer vision and machine intelligence approaches to forecast and enhance the production of solar energy. The suggested approach entails the amalgamation of data-driven methods from the fields of computer vision and machine learning. Early information on climate, solar-oriented radiation, and solar-powered charger execution is gathered from various sources. PC vision calculations utilize satellite information or ground-based pictures to remove overcast cover, development, and other climatic qualities. The hour of day and season are added to visual information to deliver a full dataset. The dataset trains AI frameworks to gauge solar irradiance and energy creation.
Autorentext
Aparna Unni è ricercatrice e Harpreet Kaur Channi è ricercatrice presso la Eudoxia Research University, New Castle, USA.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786208222482
- Genre Electrical Engineering
- Sprache Englisch
- Anzahl Seiten 84
- Herausgeber LAP LAMBERT Academic Publishing
- Größe H220mm x B150mm x T6mm
- Jahr 2024
- EAN 9786208222482
- Format Kartonierter Einband
- ISBN 6208222486
- Veröffentlichung 14.11.2024
- Titel Solar Power Forecasting Through Machine Intelligence
- Autor Aparna Unni , Harpreet Kaur Channi
- Untertitel DE
- Gewicht 143g