Soliton

CHF 43.20
Auf Lager
SKU
F0PJL8L4364
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online.In mathematics and physics, a soliton is a self-reinforcing solitary wave (a wave packet or pulse) that maintains its shape while it travels at constant speed. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium. "Dispersive effects" refer to dispersion relations between the frequency and the speed of the waves. Solitons arise as the solutions of a widespread class of weakly nonlinear dispersive partial differential equations describing physical systems. The soliton phenomenon was first described by John Scott Russell (1808 1882) who observed a solitary wave in the Union Canal in Scotland. He reproduced the phenomenon in a wave tank and named it the "Wave of Translation".

Klappentext

In mathematics and physics, a soliton is a self-reinforcing solitary wave (a wave packet or pulse) that maintains its shape while it travels at constant speed. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium. "Dispersive effects" refer to dispersion relations between the frequency and the speed of the waves. Solitons arise as the solutions of a widespread class of weakly nonlinear dispersive partial differential equations describing physical systems. The soliton phenomenon was first described by John Scott Russell (1808-1882) who observed a solitary wave in the Union Canal in Scotland. He reproduced the phenomenon in a wave tank and named it the "Wave of Translation".

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130305017
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Genre Physik & Astronomie
    • Größe H220mm x B220mm
    • Jahr 2009
    • EAN 9786130305017
    • Format Kartonierter Einband
    • ISBN 978-613-0-30501-7
    • Titel Soliton
    • Untertitel Wave, Wave Packet, Dispersion Relation, Partial Differential Equation, Phase (waves), Integrable System, Soliton (optics), Topological Defect, Soliton Model, Vector Soliton
    • Herausgeber VDM Verlag Dr. Müller e.K.
    • Anzahl Seiten 76

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470