Solving Optimization Problems with the Heuristic Kalman Algorithm

CHF 190.85
Auf Lager
SKU
EFTDE3BP4HS
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 05.11.2025 und Do., 06.11.2025

Details

This text focuses on simple and easy-to-use design strategies for solving complex engineering problems that arise in several fields of engineering design, namely non-convex optimization problems.
The main optimization tool used in this book to tackle the problem of nonconvexity is the Heuristic Kalman Algorithm (HKA). The main characteristic of HKA is the use of a stochastic search mechanism to solve a given optimization problem. From a computational point of view, the use of a stochastic search procedure appears essential for dealing with non-convex problems.
The topics discussed in this monograph include basic definitions and concepts from the classical optimization theory, the notion of the acceptable solution, machine learning, the concept of preventive maintenance, and more.
The Heuristic Kalman Algorithm discussed in this book applies to many fields such as robust structured control, electrical engineering, mechanical engineering, machine learning, reliability, and preference models. This large coverage of practical optimization problems makes this text very useful to those working on and researching systems design. The intended audience includes industrial engineers, postgraduates, and final-year undergraduates in various fields of systems design.


Provides a review of the main deterministic and stochastic optimization methods Presents material that industrial engineers, postgraduates, and undergraduates in systems design will find useful Large coverage of practical optimization problems

Autorentext

Rosario Toscano was born in Catania, Italy. He received his masters degree with specialization in control from the Institut National des Sciences Appliquées de Lyon in 1996. He received the Ph.D. degree from the Ecole Centrale de Lyon in 2000. He received the HDR degree (Habilitation to Direct Research) from the University Jean Monnet of Saint-Etienne in 2007. He is currently full professor at the Ecole Nationale d'Ingénieurs de Saint-Etienne and Ecole Centrale de Lyon (ENISE-ECL). His research interests include: structured controllers, robust control, stochastic optimization methods, dynamic reliability, fault detection, multimodel approach applied to diagnosis and control, fretting wear of mechanical surfaces and sensorial design of products.


Inhalt
1 Introduction.- 2 Stochastic Optimization Methods.- 3 Heuristic Kalman Algorithm.- 4 Some Notions on System Modeling.- 5 Robust Control of Uncertain Parametric Systems.- 6 Preventive Maintenance.- 7 Machine Learning.- 8 Conclusion.- A Signal and System Norms.- B Convergence Properties of the HKA and Program Code.- References.- Index.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031524615
    • Lesemotiv Verstehen
    • Genre Maths
    • Anzahl Seiten 308
    • Herausgeber Springer International Publishing
    • Größe H235mm x B155mm x T17mm
    • Jahr 2025
    • EAN 9783031524615
    • Format Kartonierter Einband
    • ISBN 978-3-031-52461-5
    • Veröffentlichung 22.03.2025
    • Titel Solving Optimization Problems with the Heuristic Kalman Algorithm
    • Autor Rosario Toscano
    • Untertitel New Stochastic Methods
    • Gewicht 470g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.