Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
SOME PROBLEMS REGARDING THE SPECTRA OF HODGE-DE RHAM OPERATORS
Details
Spectral geometry deals with the survey of these natural, differential operators spectrums and among other things it tries to emphasize geometrical and topological properties of a manifold that can be recuperated from the spectrums. The present work is going to approach several issues referring to the spectrums of Hodge-de Rham operators on closed Riemannian manifolds. The author of this paper is going to discuss the continuous dependence on the Riemannian metrics on a smooth and closed differential manifold of the eigenvalues of the Hodge-de Rham operators and its restrictions regarding the exact, differential form spaces and consequences of such feature. Moreover, by using J. Wenzelburger s idea [80], [81], we are going to prove that the eigenvalues of the Hodge-de Rham operators even smoothly depend on the Riemannian metrics on a smooth, closed, differential manifold if the Fréchet smooth manifold canonical structure is taken into consideration in the space of all Riemannian metrics with such a manifold.
Autorentext
Mihaela Albici, Studied Pure Mathematics at University of West, Timisoara, PhD. Lecturer at University Constantin Brancoveanu, Pitesti
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 227g
- Untertitel The smooth and continuous dependence on the Riemannian metric of the eigenvalues of the Hodge-de Rham operators and its consequences
- Autor Albici Mihaela
- Titel SOME PROBLEMS REGARDING THE SPECTRA OF HODGE-DE RHAM OPERATORS
- Veröffentlichung 24.02.2010
- ISBN 3838348168
- Format Kartonierter Einband
- EAN 9783838348162
- Jahr 2010
- Größe H220mm x B150mm x T9mm
- Anzahl Seiten 140
- GTIN 09783838348162