Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Sparse Grid Methods for Higher Dimensional Approximation
Details
Approximation of functions depending on more than three variables is relevant for the simulation of dynamic models. Especially stochastic models lead to a wide range of applications like simulation of polymeric liquids, kinetic equations for forces acting on offshore wind parks, or even the pricing of financial products. Sparse Grids have been designed to significantly reduce the cost to approximate high-dimensional functions under certain smoothness conditions. This book presents tools to design and work with Sparse Grids, including construction properties, algorithms, data structures and error estimates. It also discusses inherent limitations and their benefits when it comes to the simulation of stochastic models, namely to the representation of probability density functions. Furthermore, the book reveals new space- and dimension-adaptive Sparse Grids which are suitable for functions that effectively depend on only a few of their input variables.
Autorentext
Christian Feuersänger, Dr. rer. nat., studied computer science with emphasis on scientific computing at the University of Bonn. There, he received his diploma degree in computer science and doctorate in natural sciences at the Institute for Numerical Simulation. During his postgraduate studies he worked as a research assistant.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783838121406
- Sprache Englisch
- Größe H220mm x B150mm x T11mm
- Jahr 2010
- EAN 9783838121406
- Format Kartonierter Einband (Kt)
- ISBN 978-3-8381-2140-6
- Titel Sparse Grid Methods for Higher Dimensional Approximation
- Autor Christian Feuersänger
- Untertitel Theory and Experiments on Benefits and Limitations of Sparse Grid Approximation Methods and Generalizations to Low Effective Dimensionality
- Gewicht 290g
- Herausgeber Südwestdeutscher Verlag
- Anzahl Seiten 184
- Genre Mathematik