Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Sparse Modeling
Details
This book provides an introduction to the growing field of sparse modeling, including application examples, problem formulations that yield sparse solutions, algorithms for finding such solutions, and recent theoretical results on sparse recovery. It describes optimization problems involving commonly used sparsity-enforcing approaches as well as
Sparse models are particularly useful in scientific applications, such as biomarker discovery in genetic or neuroimaging data, where the interpretability of a predictive model is essential. Sparsity can also dramatically improve the cost efficiency of signal processing.
Sparse Modeling: Theory, Algorithms, and Applications provides an introduction to the growing field of sparse modeling, including application examples, problem formulations that yield sparse solutions, algorithms for finding such solutions, and recent theoretical results on sparse recovery. The book gets you up to speed on the latest sparsity-related developments and will motivate you to continue learning about the field.
The authors first present motivating examples and a high-level survey of key recent developments in sparse modeling. The book then describes optimization problems involving commonly used sparsity-enforcing tools, presents essential theoretical results, and discusses several state-of-the-art algorithms for finding sparse solutions.
The authors go on to address a variety of sparse recovery problems that extend the basic formulation to more sophisticated forms of structured sparsity and to different loss functions. They also examine a particular class of sparse graphical models and cover dictionary learning and sparse matrix factorizations.
Autorentext
Irina Rish, Genady Grabarnik
Inhalt
Introduction. Sparse Recovery: Problem Formulations. Theoretical Results (Deterministic Part). Theoretical Results (Probabilistic Part). Algorithms for Sparse Recovery Problems. Beyond LASSO: Structured Sparsity. Beyond LASSO: Other Loss Functions. Sparse Graphical Models. Sparse Matrix Factorization: Dictionary Learning and Beyond. Epilogue. Appendix. Bibliography. Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09780367658922
- Anzahl Seiten 236
- Herausgeber CRC Press
- Größe H234mm x B156mm
- Jahr 2020
- EAN 9780367658922
- Format Kartonierter Einband
- ISBN 978-0-367-65892-2
- Veröffentlichung 30.09.2020
- Titel Sparse Modeling
- Autor Rish Irina , Grabarnik Genady
- Untertitel Theory, Algorithms, and Applications
- Gewicht 470g
- Sprache Englisch