Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Sparse Ruler
CHF 49.55
Auf Lager
SKU
SJSC3LDAL54
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025
Details
High Quality Content by WIKIPEDIA articles! A sparse ruler is a ruler in which some of the distance marks are missing, yet which allows you to measure any integer distance up to its full length. More abstractly, a sparse ruler of length L with m marks is a sequence of integers a1,a2,...,am where 0 = a1 a2 ... am = L. The marks a1 and am correspond to the ends of the ruler. In order to measure the distance K, with 0 = K = L there must be marks ai and aj such that aj ai = K. A sparse ruler is called minimal if there is no sparse ruler of length L with m 1 marks. In other words, if any any of the marks is removed one can no longer measure all of the distances. A sparse ruler is called maximal if there is no sparse ruler of length L + 1 with m marks. A sparse ruler is called optimal if it is both minimal and maximal. Since the number of distinct pairs of marks is m(m 1) / 2, this is an upper bound on the length L of any maximal sparse ruler with m marks. This upper bound can be achieved only for 2, 3 or 4 marks. For larger numbers of marks, the difference between the optimal length and the bound grows gradually, and unevenly.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131197598
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131197598
- Format Fachbuch
- Titel Sparse Ruler
- Herausgeber Betascript Publishing
- Anzahl Seiten 112
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung