Sparse Ruler

CHF 49.55
Auf Lager
SKU
SJSC3LDAL54
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

High Quality Content by WIKIPEDIA articles! A sparse ruler is a ruler in which some of the distance marks are missing, yet which allows you to measure any integer distance up to its full length. More abstractly, a sparse ruler of length L with m marks is a sequence of integers a1,a2,...,am where 0 = a1 a2 ... am = L. The marks a1 and am correspond to the ends of the ruler. In order to measure the distance K, with 0 = K = L there must be marks ai and aj such that aj ai = K. A sparse ruler is called minimal if there is no sparse ruler of length L with m 1 marks. In other words, if any any of the marks is removed one can no longer measure all of the distances. A sparse ruler is called maximal if there is no sparse ruler of length L + 1 with m marks. A sparse ruler is called optimal if it is both minimal and maximal. Since the number of distinct pairs of marks is m(m 1) / 2, this is an upper bound on the length L of any maximal sparse ruler with m marks. This upper bound can be achieved only for 2, 3 or 4 marks. For larger numbers of marks, the difference between the optimal length and the bound grows gradually, and unevenly.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131197598
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131197598
    • Format Fachbuch
    • Titel Sparse Ruler
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 112
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470