Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Spatio-Temporal Human Activity Recognition using CNN and LSTM
Details
This book presents a robust Human Activity Recognition (HAR) system that integrates Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) networks, evaluated on the challenging UCF50 dataset. By combining CNNs' ability to extract spatial features from video frames with LSTMs' strength in modeling temporal sequences, the hybrid model accurately recognizes both simple and complex human actions unfolding over time. This approach addresses key HAR challenges, improving accuracy and generalization across diverse activities. Experimental results demonstrate enhanced precision and stability over conventional models. The system's versatility supports applications in surveillance, healthcare, sports analytics, and human-computer interaction. By bridging spatial and temporal learning, the book offers a scalable, real-world HAR solution adaptable to various environments, laying groundwork for future advances in activity recognition technologies.
Autorentext
Tarunima Chatterjee,Department of Computer Science and Engineering (Syber Securuty),Haldia Institute of Technology,Haldia, West Bengal.Pinaki Pratim Acharjya,Department of Computer Science and Engineering,Haldia Institute of Technology,Haldia, West Bengal.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786209136832
- Sprache Englisch
- Genre Economy
- Anzahl Seiten 68
- Größe H220mm x B150mm
- Jahr 2025
- EAN 9786209136832
- Format Kartonierter Einband
- ISBN 978-620-9-13683-2
- Titel Spatio-Temporal Human Activity Recognition using CNN and LSTM
- Autor Tarunima Chatterjee , Pinaki Pratim Acharjya
- Untertitel DE
- Herausgeber LAP LAMBERT Academic Publishing