Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Sperner's lemma
Details
High Quality Content by WIKIPEDIA articles! In mathematics, Sperner's lemma is a combinatorial analog of the Brouwer fixed point theorem. Sperner's lemma states that every Sperner coloring of a triangulation of an n-dimensional simplex contains a cell colored with a complete set of colors. The initial result of this kind was proved by Emanuel Sperner, in relation with proofs of invariance of domain. Sperner colorings have been used for effective computation of fixed points, in root-finding algorithms, and are applied in fair division algorithms.
Klappentext
High Quality Content by WIKIPEDIA articles! In mathematics, Sperner's lemma is a combinatorial analog of the Brouwer fixed point theorem. Sperner's lemma states that every Sperner coloring of a triangulation of an n-dimensional simplex contains a cell colored with a complete set of colors. The initial result of this kind was proved by Emanuel Sperner, in relation with proofs of invariance of domain. Sperner colorings have been used for effective computation of fixed points, in root-finding algorithms, and are applied in fair division algorithms.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130347987
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B150mm x T4mm
- Jahr 2010
- EAN 9786130347987
- Format Fachbuch
- ISBN 978-613-0-34798-7
- Titel Sperner's lemma
- Untertitel Mathematics, Sperner Family, Brouwer Fixed Point Theorem, Triangulation, Root-Finding Algorithm, Fair Division, Intermediate Value Theorem, Borsuk-Ulam Theorem
- Gewicht 125g
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 72
- Genre Mathematik