Sperner's lemma

CHF 37.25
Auf Lager
SKU
65P8427JG76
Stock 1 Verfügbar
Geliefert zwischen Do., 22.01.2026 und Fr., 23.01.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, Sperner's lemma is a combinatorial analog of the Brouwer fixed point theorem. Sperner's lemma states that every Sperner coloring of a triangulation of an n-dimensional simplex contains a cell colored with a complete set of colors. The initial result of this kind was proved by Emanuel Sperner, in relation with proofs of invariance of domain. Sperner colorings have been used for effective computation of fixed points, in root-finding algorithms, and are applied in fair division algorithms.

Klappentext

High Quality Content by WIKIPEDIA articles! In mathematics, Sperner's lemma is a combinatorial analog of the Brouwer fixed point theorem. Sperner's lemma states that every Sperner coloring of a triangulation of an n-dimensional simplex contains a cell colored with a complete set of colors. The initial result of this kind was proved by Emanuel Sperner, in relation with proofs of invariance of domain. Sperner colorings have been used for effective computation of fixed points, in root-finding algorithms, and are applied in fair division algorithms.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130347987
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Größe H220mm x B150mm x T4mm
    • Jahr 2010
    • EAN 9786130347987
    • Format Fachbuch
    • ISBN 978-613-0-34798-7
    • Titel Sperner's lemma
    • Untertitel Mathematics, Sperner Family, Brouwer Fixed Point Theorem, Triangulation, Root-Finding Algorithm, Fair Division, Intermediate Value Theorem, Borsuk-Ulam Theorem
    • Gewicht 125g
    • Herausgeber VDM Verlag Dr. Müller e.K.
    • Anzahl Seiten 72
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470