Sperner's Lemma
CHF 39.60
Auf Lager
SKU
HSKMNO9JRQM
Geliefert zwischen Mi., 08.10.2025 und Do., 09.10.2025
Details
High Quality Content by WIKIPEDIA articles! High Quality Content by WIKIPEDIA articles! High Quality Content by WIKIPEDIA articles! In mathematics, Sperner's lemma is a combinatorial analog of the Brouwer fixed point theorem. Sperner's lemma states that every Sperner coloring of a triangulation of an n-dimensional simplex contains a cell colored with a complete set of colors. The initial result of this kind was proved by Emanuel Sperner, in relation with proofs of invariance of domain. Sperner colorings have been used for effective computation of fixed points, in root-finding algorithms, and are applied in fair division algorithms. According to the Soviet Mathematical Encyclopaedia (ed. I.M. Vinogradov), a related 1929 theorem (of Knaster, Borsuk and Mazurkiewicz) has also become known as the Sperner lemma - this point is discussed in the English translation (ed. M. Hazewinkel). It is now commonly known as the Knaster Kuratowski Mazurkiewicz lemma.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130332754
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B150mm x T4mm
- Jahr 2010
- EAN 9786130332754
- Format Kartonierter Einband
- ISBN 978-613-0-33275-4
- Titel Sperner's Lemma
- Untertitel Sperner Family, Combinatorics, Analogy, Brouwer Fixed Point Theorem, Triangulation (advanced geometry), Simplex, Emanuel Sperner, Fixed Point (mathematics), Invariance of Domain, Root-finding Algorithm
- Gewicht 124g
- Herausgeber Betascript Publishers
- Anzahl Seiten 72
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung