Sphere packing

CHF 49.50
Auf Lager
SKU
ED5RIUJFPH6
Stock 1 Verfügbar
Geliefert zwischen Do., 22.01.2026 und Fr., 23.01.2026

Details

High Quality Content by WIKIPEDIA articles! n mathematics sphere packing problems concern arrangements of non-overlapping identical spheres which fill a space. Usually the space involved is three-dimensional Euclidean space. However, sphere packing problems can be generalised to two dimensional space (where the "spheres" are circles), to n-dimensional space (where the "spheres" are hyperspheres) and to non-Euclidean spaces such as hyperbolic space.A typical sphere packing problem is to find an arrangement in which the spheres fill as large a proportion of the space as possible. The proportion of space filled by the spheres is called the density of the arrangement. As the density of an arrangement can vary depending on the volume over which it is measured, the problem is usually to maximise the average or asymptotic density, measured over a large enough volume.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130348120
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Größe H220mm x B150mm x T7mm
    • Jahr 2010
    • EAN 9786130348120
    • Format Kartonierter Einband
    • ISBN 978-613-0-34812-0
    • Titel Sphere packing
    • Untertitel Mathematics, Dimension, Euclidean Space, Sphere, Hyperbolic Space, Symmetry, Carl Friedrich Gauss, Hexagon, Honeycomb, Circle Packing Theorem
    • Gewicht 185g
    • Herausgeber VDM Verlag Dr. Müller e.K.
    • Anzahl Seiten 112
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470