Square Roots of Elliptic Systems in Locally Uniform Domains

CHF 177.35
Auf Lager
SKU
3REN9L06J0I
Stock 1 Verfügbar
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025

Details

This book establishes a comprehensive theory to treat square roots of elliptic systems incorporating mixed boundary conditions under minimal geometric assumptions. To lay the groundwork, the text begins by introducing the geometry of locally uniform domains and establishes theory for function spaces on locally uniform domains, including interpolation theory and extension operators. In these introductory parts, fundamental knowledge on function spaces, interpolation theory and geometric measure theory and fractional dimensions are recalled, making the main content of the book easier to comprehend. The centerpiece of the book is the solution to Kato's square root problem on locally uniform domains. The Kato result is complemented by corresponding L bounds in natural intervals of integrability parameters.
This book will be useful to researchers in harmonic analysis, functional analysis and related areas.


Provides a complete framework to treat elliptic and parabolic problems incorporating mixed boundary conditions Introduces global approaches to cover problems subject to mixed boundary conditions Solves Kato's square root problem under minimal geometric requirements

Autorentext

Sebastian Bechtel is a postdoctoral researcher in the analysis group of the Delft Institute of Applied Mathematics at Delft university of Technology. He obtained his PhD in Mathematics at the Technical University of Darmstadt, Germany in 2021. His PhD studies were supported by a scholarship of "Studienstiftung des Deutschen Volkes". His research interests include harmonic analysis, PDEs, function spaces, functional calculus, and related topics.


Inhalt

Introduction.- Locally uniform domains.- A density result for locally uniform domains.- Sobolev extension operator.- A short account on sectorial and bisectorial operators.- Elliptic systems in divergence form.- Porous sets.- Sobolev spaces with a vanishing trace condition.- Hardy's inequality.- Real interpolation of Sobolev spaces.- Higher regularity for fractional powers of the Laplacian.- First order formalism.- Kato's square root property on thick sets.- Removing the thickness condition.- Interlude: Extension operators for fractional Sobolev spaces.- Critical numbers and Lp Lq bounded families of operators.- Lp-bounds for the H1-calculus and Riesz transform.- Calder´onZygmund decomposition for Sobolev functions.- Lp bounds for square roots of elliptic systems.- References.- Index.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031637674
    • Lesemotiv Verstehen
    • Genre Maths
    • Anzahl Seiten 200
    • Herausgeber Birkhäuser
    • Größe H241mm x B160mm x T17mm
    • Jahr 2024
    • EAN 9783031637674
    • Format Fester Einband
    • ISBN 978-3-031-63767-4
    • Veröffentlichung 10.09.2024
    • Titel Square Roots of Elliptic Systems in Locally Uniform Domains
    • Autor Sebastian Bechtel
    • Untertitel Operator Theory: Advances and Applications 303 - Linear Operators and Linear Sys
    • Gewicht 471g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470