Stability of Functional Equations in Random Normed Spaces

CHF 110.35
Auf Lager
SKU
6CK6702PFG6
Stock 1 Verfügbar
Geliefert zwischen Fr., 07.11.2025 und Mo., 10.11.2025

Details

This book discusses the rapidly developing subject of mathematical analysis that deals primarily with stability of functional equations in generalized spaces. The fundamental problem in this subject was proposed by Stan M. Ulam in 1940 for approximate homomorphisms. The seminal work of Donald H. Hyers in 1941 and that of Themistocles M. Rassias in 1978 have provided a great deal of inspiration and guidance for mathematicians worldwide to investigate this extensive domain of research.

The book presents a self-contained survey of recent and new results on topics including basic theory of random normed spaces and related spaces; stability theory for new function equations in random normed spaces via fixed point method, under both special and arbitrary t-norms; stability theory of well-known new functional equations in non-Archimedean random normed spaces; and applications in the class of fuzzy normed spaces. It contains valuable results on stability in random normed spaces, and is geared toward both graduate students and research mathematicians and engineers in a broad area of interdisciplinary research.



Presents results proved in detail with several outlines examples to make the presentation of the theory well understood by large audiences Discusses useful research to both pure and applied mathematicians who search for both new and old results Presents written results for scientists and engineers who are orienting their study in the language of interdisciplinary research? Includes supplementary material: sn.pub/extras

Inhalt
Preface.- 1. Preliminaries.- 2. Generalized Spaces.- 3. Stability of Functional Equations in Random Normed Spaces Under Special t-norms.- 4. Stability of Functional Equations in Random Normed Spaces Under Arbitrary t-norms.- 5. Stability of Functional Equations in random Normed Spaces via Fixed Point Method.- 6. Stability of Functional Equations in Non-Archimedean Random Spaces.- 7. Random Stability of Functional Equations Related to Inner Product Spaces.- 8. Random Banach Algebras and Stability Results.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781493901104
    • Lesemotiv Verstehen
    • Genre Maths
    • Auflage Softcover reprint of the original 1st edition 2013
    • Anzahl Seiten 268
    • Herausgeber Springer New York
    • Größe H235mm x B155mm x T15mm
    • Jahr 2015
    • EAN 9781493901104
    • Format Kartonierter Einband
    • ISBN 1493901109
    • Veröffentlichung 26.08.2015
    • Titel Stability of Functional Equations in Random Normed Spaces
    • Autor Yeol Je Cho , Reza Saadati , Themistocles M. Rassias
    • Untertitel Springer Optimization and Its Applications 86
    • Gewicht 411g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470