Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Stable Convergence and Stable Limit Theorems
Details
The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics such as the classical central limit theorem which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level with a solid knowledge of measure theoretic probability.
First monograph entirely devoted to the subject of stable convergence Presents a clear and sound introduction to the field Includes examples of successful applications and exercise sets with solutions to illustrate the theoretical results Includes supplementary material: sn.pub/extras
Autorentext
Erich Haeusler studied mathematics and physics at the University of Bochum from 1972 to 1978. He received his doctorate in mathematics in 1982 from the University of Munich. Since 1991 he has been Professor of Mathematics at the University of Giessen, where he teaches probability and mathematical statistics. Harald Luschgy studied mathematics, physics and mathematical logic at the Universities of Bonn and Münster. He received his doctorate in mathematics in 1976 from the University of Münster. He held visiting positions at the Universities of Hamburg, Bayreuth, Dortmund, Oldenburg, Passau and Wien and was a recipient of a Heisenberg grant from the DFG. Since 1995 he is Professor of Mathematics at the University of Trier where he teaches probability and mathematical statistics.
Inhalt
Preface.- 1.Weak Convergence of Markov Kernels.- 2.Stable Convergence.- 3.Applications.- 4.Stability of Limit Theorems.- 5.Stable Martingale Central Limit Theorems.- 6.Stable Functional Martingale Central Limit Theorems.- 7.A Stable Limit Theorem with Exponential Rate.- 8.Autoregression of Order One.- 9.Branching Processes.- A. Appendix.- B. Appendix.- Bibliography.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319365190
- Lesemotiv Verstehen
- Genre Maths
- Auflage Softcover reprint of the original 1st edition 2015
- Anzahl Seiten 240
- Herausgeber Springer International Publishing
- Größe H235mm x B155mm x T14mm
- Jahr 2016
- EAN 9783319365190
- Format Kartonierter Einband
- ISBN 3319365193
- Veröffentlichung 15.10.2016
- Titel Stable Convergence and Stable Limit Theorems
- Autor Harald Luschgy , Erich Häusler
- Untertitel Probability Theory and Stochastic Modelling 74
- Gewicht 371g
- Sprache Englisch