Statistical Analysis for High-Dimensional Data

CHF 190.35
Auf Lager
SKU
KARCVOS3AOE
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014.

The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in big data situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection.

Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.


Broad spectrum of problems Cutting edge research Includes supplementary material: sn.pub/extras

Inhalt

Some Themes in High-Dimensional Statistics: A. Frigessi et al.- Laplace Appoximation in High-Dimensional Bayesian Regression: R. Barber, M. Drton et al.- Preselection in Lasso-Type Analysis for Ultra-High Dimensional Genomic Exploration: L.C. Bergersen, I. Glad et al.- Spectral Clustering and Block Models: a Review and a new Algorithm: S. Bhattacharyya et al.- Bayesian Hierarchical Mixture Models: L. Bottelo et al.- iBATCGH; Integrative Bayesian Analysis of Transcriptomic and CGH Data: Cassese, M. Vannucci et al.- Models of Random Sparse Eigenmatrices and Bayesian Analysis of Multivariate Structure: A.J. Cron, M. West.- Combining Single and Paired End RNA-seq Data for Differential Expression Analysis: F. Feng, T.Speed et al.- An Imputation Method for Estimation the Learning Curve in Classification Problems: E. Laber et al.- Baysian Feature Allocation Models for Tumor Heterogeneity: J. Lee, P. Mueller et al.- Bayesian Penalty Mixing: The Case of a Non-Separable Penalty: V. Rockova etal.- Confidence Intervals for Maximin Effects in Inhomogeneous Large Scale Data: D. Rothenhausler et al.- Chisquare Confidence Sets in High-Dimensional Regression: S. van de Geer et al.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319270975
    • Lesemotiv Verstehen
    • Genre Maths
    • Auflage 1st edition 2016
    • Editor Arnoldo Frigessi, Peter Bühlmann, Marina Vannucci, Mette Langaas, Sylvia Richardson, Ingrid Glad
    • Anzahl Seiten 320
    • Herausgeber Springer International Publishing
    • Größe H241mm x B160mm x T23mm
    • Jahr 2016
    • EAN 9783319270975
    • Format Fester Einband
    • ISBN 3319270974
    • Veröffentlichung 17.02.2016
    • Titel Statistical Analysis for High-Dimensional Data
    • Untertitel The Abel Symposium 2014
    • Gewicht 647g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470