Statistical Inference

CHF 117.15
Auf Lager
SKU
92K7SFIGPQ0
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Filling a gap in current Bayesian theory, this book presents a unified Bayesian treatment of parameter inference and model comparisons that can be used with simple diffuse prior specifications. This novel approach provides new solutions to difficult model comparison problems and offers direct Bayesian counterparts of frequentist t-tests and other standard statistical methods for hypothesis testing. The book discusses nonparametric Bayesian survey analysis, gives alternatives to current frequentist nonparametric methods, and includes new goodness-of-fit methods for assessing parametric models. It also covers normal regression, analysis of variance, two-level variance component models, and finite mixtures.


Filling a gap in current Bayesian theory, Statistical Inference: An Integrated Bayesian/Likelihood Approach presents a unified Bayesian treatment of parameter inference and model comparisons that can be used with simple diffuse prior specifications. This novel approach provides new solutions to difficult model comparison problems and offers direct Bayesian counterparts of frequentist t-tests and other standard statistical methods for hypothesis testing.

After an overview of the competing theories of statistical inference, the book introduces the Bayes/likelihood approach used throughout. It presents Bayesian versions of one- and two-sample t-tests, along with the corresponding normal variance tests. The author then thoroughly discusses the use of the multinomial model and noninformative Dirichlet priors in "model-free" or nonparametric Bayesian survey analysis, before covering normal regression and analysis of variance. In the chapter on binomial and multinomial data, he gives alternatives, based on Bayesian analyses, to current frequentist nonparametric methods. The text concludes with new goodness-of-fit methods for assessing parametric models and a discussion of two-level variance component models and finite mixtures.

Emphasizing the principles of Bayesian inference and Bayesian model comparison, this book develops a unique methodology for solving challenging inference problems. It also includes a concise review of the various approaches to inference.


Autorentext

Murray Aitkin is an honorary professorial fellow in the Department of Mathematics and Statistics at the University of Melbourne in Australia.


Klappentext

Filling a gap in current Bayesian theory, Statistical Inference: An Integrated Bayesian/Likelihood Approach presents a unified Bayesian treatment of parameter inference and model comparisons that can be used with simple diffuse prior specifications. This novel approach provides new solutions to difficult model comparison problems and offers direct Bayesian counterparts of frequentist t-tests and other standard statistical methods for hypothesis testing. After an overview of the competing theories of statistical inference, the book introduces the Bayes/likelihood approach used throughout. It presents Bayesian versions of one- and two-sample t-tests, along with the corresponding normal variance tests. The author then thoroughly discusses the use of the multinomial model and noninformative Dirichlet priors in "model-free" or nonparametric Bayesian survey analysis, before covering normal regression and analysis of variance. In the chapter on binomial and multinomial data, he gives alternatives, based on Bayesian analyses, to current frequentist nonparametric methods. The text concludes with new goodness-of-fit methods for assessing parametric models and a discussion of two-level variance component models and finite mixtures. Emphasizing the principles of Bayesian inference and Bayesian model comparison, this book develops a unique methodology for solving challenging inference problems. It also includes a concise review of the various approaches to inference.


Zusammenfassung

Filling a gap in current Bayesian theory, Statistical Inference: An Integrated Bayesian/Likelihood Approach presents a unified Bayesian treatment of parameter inference and model comparisons that can be used with simple diffuse prior specifications. This novel approach provides new solutions to difficult model comparison problems and offers direct Bayesian counterparts of frequentist t-tests and other standard statistical methods for hypothesis testing.

After an overview of the competing theories of statistical inference, the book introduces the Bayes/likelihood approach used throughout. It presents Bayesian versions of one- and two-sample t-tests, along with the corresponding normal variance tests. The author then thoroughly discusses the use of the multinomial model and noninformative Dirichlet priors in "model-free" or nonparametric Bayesian survey analysis, before covering normal regression and analysis of variance. In the chapter on binomial and multinomial data, he gives alternatives, based on Bayesian analyses, to current frequentist nonparametric methods. The text concludes with new goodness-of-fit methods for assessing parametric models and a discussion of two-level variance component models and finite mixtures.

Emphasizing the principles of Bayesian inference and Bayesian model comparison, this book develops a unique methodology for solving challenging inference problems. It also includes a concise review of the various approaches to inference.


Inhalt

Theories of Statistical Inference. The Integrated Bayes/Likelihood Approach. t-Tests and Normal Variance Tests. Unified Analysis of Finite Populations. Regression and Analysis of Variance. Binomial and Multinomial Data. Goodness of Fit and Model Diagnostics. Complex Models. References. Indices.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09780367383947
    • Genre Maths
    • Anzahl Seiten 254
    • Herausgeber Chapman and Hall/CRC
    • Größe H234mm x B156mm
    • Jahr 2019
    • EAN 9780367383947
    • Format Kartonierter Einband
    • ISBN 978-0-367-38394-7
    • Veröffentlichung 05.09.2019
    • Titel Statistical Inference
    • Autor Aitkin Murray
    • Untertitel An Integrated Bayesian/Likelihood Approach
    • Gewicht 453g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470