Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Statistical Inference Based on Kernel Distribution Function Estimators
Details
This book presents a study of statistical inferences based on the kernel-type estimators of distribution functions. The inferences involve matters such as quantile estimation, nonparametric tests, and mean residual life expectation, to name just some. Convergence rates for the kernel estimators of density functions are slower than ordinary parametric estimators, which have root-n consistency. If the appropriate kernel function is used, the kernel estimators of the distribution functions recover the root-n consistency, and the inferences based on kernel distribution estimators have root-n consistency. Further, the kernel-type estimator produces smooth estimation results. The estimators based on the empirical distribution function have discrete distribution, and the normal approximation cannot be improvedthat is, the validity of the Edgeworth expansion cannot be proved. If the support of the population density function is bounded, there is a boundary problem, namely the estimator does not have consistency near the boundary. The book also contains a study of the mean squared errors of the estimators and the Edgeworth expansion for quantile estimators.
Is a unique book for studies of kernel distribution estimators and their application to statistical inference Provides basic tools to help enable the study of nonparametric inference Uses many of the results presented here to facilitate machine learning
Autorentext
Rizky Reza Fauzi: His major field is mathematical statistics, and he got Ph.D. in 2020. He has good skill of mathematics and published 4 papers. He will be one of the leading researchers in Indonesia. Yoshihiko Maesono: He published about 50 papers which study nonparametric inference. In the last 20 years, he has been studying kernel-type estimation and obtained new theoretical results, especially the methods based on kernel estimation of the distribution function.
Inhalt
Kernel density estimator.- Kernel distribution estimator.- Quantile estimation.- Nonparametric tests.- Mean residual life estimator.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789819918614
- Genre Maths
- Auflage 1st edition 2023
- Anzahl Seiten 104
- Herausgeber Springer
- Größe H235mm x B155mm x T7mm
- Jahr 2023
- EAN 9789819918614
- Format Kartonierter Einband
- ISBN 9819918618
- Veröffentlichung 01.06.2023
- Titel Statistical Inference Based on Kernel Distribution Function Estimators
- Autor Rizky Reza Fauzi , Yoshihiko Maesono
- Untertitel SpringerBriefs in Statistics - JSS Research Series in Statistics
- Gewicht 172g
- Sprache Englisch