Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Statistical Methods for Handling Incomplete Data
Details
Due to recent theoretical findings and advances in statistical computing, there has been a rapid development of techniques and applications in the area of missing data analysis. This book covers the most up-to-date statistical theories and computational methods for analyzing incomplete data.
Autorentext
Jae Kwang Kim is a LAS dean's professor in the Department of Statistics at Iowa State University. He is a fellow of American Statistical Association (ASA) and Institute of Mathematical Statistics (IMS). He is the recipient of 2015 Gertude M. Cox award, sponsored by Washington Statistical Society and RTI international.
Jun Shao is a professor in the Department of Statistics at University of Wisconsin Madison. He is a fellow of ASA and IMS, a former president of International Chinese Statistical Association and currently the founding editor of Statistical Theory and Related Fields.
Inhalt
- Introduction 2. Likelihood-based Approach 3. Computation 4. Imputation 5. Multiple Imputation 6. Fractional Imputation 7. Propensity Scoring Approach 8. Nonignorable Missing Data 9. Longitudinal and Clustered Data 10. Application to Survey Sampling 11. Data Integration 12. Advanced Topics
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781032118130
- Genre Maths
- Auflage 2. A.
- Anzahl Seiten 380
- Herausgeber Chapman and Hall/CRC
- Größe H234mm x B156mm
- Jahr 2024
- EAN 9781032118130
- Format Kartonierter Einband
- ISBN 978-1-03-211813-0
- Veröffentlichung 29.01.2024
- Titel Statistical Methods for Handling Incomplete Data
- Autor Kim Jae Kwang , Shao Jun
- Gewicht 760g
- Sprache Englisch