Stochastic Analysis

CHF 164.55
Auf Lager
SKU
9KE7171D59U
Stock 1 Verfügbar
Geliefert zwischen Fr., 21.11.2025 und Mo., 24.11.2025

Details

This book is intended for university seniors and graduate students majoring in probability theory or mathematical finance. In the first chapter, results in probability theory are reviewed. Then, it follows a discussion of discrete-time martingales, continuous time square integrable martingales (particularly, continuous martingales of continuous paths), stochastic integrations with respect to continuous local martingales, and stochastic differential equations driven by Brownian motions. In the final chapter, applications to mathematical finance are given. The preliminary knowledge needed by the reader is linear algebra and measure theory. Rigorous proofs are provided for theorems, propositions, and lemmas.

In this book, the definition of conditional expectations is slightly different than what is usually found in other textbooks. For the DoobMeyer decomposition theorem, only square integrable submartingales are considered, and only elementary facts ofthe square integrable functions are used in the proof. In stochastic differential equations, the EulerMaruyama approximation is used mainly to prove the uniqueness of martingale problems and the smoothness of solutions of stochastic differential equations.


Defines conditional exceptions differently than in other books Uses only elementary facts for proof of the DoobMeyer decomposition theorem for special cases Shows how the EulerMaruyama approximation plays an important role in proving the uniqueness of martingale problems

Autorentext

The author is currently Professor Emeritus at The University of Tokyo and visiting Professor at Meiji University. He previously held positions at The University of Tokyo and Research Institute for Mathematical Sciences, Kyoto University. He was an invited speaker at the ICM 1990.


Inhalt
Chapter 1. Preparations from probability theory.- Chapter 2. Martingale with discrete parameter.- Chapter 3. Martingale with continuous parameter.- Chapter 4. Stochastic integral.- Chapter 5. Applications of stochastic integral.- Chapter 6. Stochastic differential equation.- Chapter 7. Application to finance.- Chapter 8. Appendices.- References.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789811588662
    • Lesemotiv Verstehen
    • Genre Maths
    • Auflage 1st edition 2020
    • Anzahl Seiten 232
    • Herausgeber Springer Nature Singapore
    • Größe H235mm x B155mm x T13mm
    • Jahr 2021
    • EAN 9789811588662
    • Format Kartonierter Einband
    • ISBN 981158866X
    • Veröffentlichung 21.10.2021
    • Titel Stochastic Analysis
    • Autor Shigeo Kusuoka
    • Untertitel Monographs in Mathematical Economics 3
    • Gewicht 359g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470