Stochastic Disaggregation Modelling of Rainfall series

CHF 77.85
Auf Lager
SKU
OEVM0QBQTNS
Stock 1 Verfügbar
Geliefert zwischen Mi., 21.01.2026 und Do., 22.01.2026

Details

Meteorological models generate fields of precipitation and other climatological variables as spatial averages at the scale of the grid used for numerical solution. The grid-scale can be large, particularly for general circulation models and disaggregation is required. Disaggregation models were introduced in hydrology by the pioneering work of Valencia and Schaake (1972, 1973). Disaggregation models are widely used tools for the stochastic simulation of hydrologic series. They divide known higher-level values (e.g. annual) into lower level ones (e.g. seasonal), which add up to the given higher level. Thus ability to transform a series from a higher time scales to a lower one. Artificial Neural Network that mimics working of human neurons has proved to be a better performing model compared to stochastic and mathematical modeling of hydrological series. The result identified for Valencia-Schaake Model, Lane's Model and using ANN technique have been thoroughly discussed for their application and better understanding of Disaggregation modeling.

Autorentext

Shashank Singh got his M.S. in ABE from Purdue University, USA in 2009. He is also MTech in SWE from JAU, 2004. He had worked at prestigious IIM Ahmedabad in a World Bank Project on Dew Harvesting , 2004-2007. He is presently HOD at MITB and has research interest working on Watershed modelling, GIS-Remote Sensing and Stochastic hydrology.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783659435782
    • Sprache Englisch
    • Größe H220mm x B150mm x T9mm
    • Jahr 2013
    • EAN 9783659435782
    • Format Kartonierter Einband
    • ISBN 3659435783
    • Veröffentlichung 04.08.2013
    • Titel Stochastic Disaggregation Modelling of Rainfall series
    • Autor Shashank Singh , Rangavajhala Subbaiah
    • Untertitel Application of Artificial Neural Network to Disaggregation of Rainfall Time Series
    • Gewicht 227g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 140
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470