Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations

CHF 67.15
Auf Lager
SKU
CHQ8UG937BT
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

In this second volume, a general approach is developed to provide approximate parameterizations of the "small" scales by the "large" ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs), which are stochastic manifolds that improve, for a given realization of the noise, in mean square error the partial knowledge of the full SPDE solution when compared to its projection onto some resolved modes. Backward-forward systems are designed to give access to such PMs in practice. The key idea consists of representing the modes with high wave numbers as a pullback limit depending on the time-history of the modes with low wave numbers. Non-Markovian stochastic reduced systems are then derived based on such a PM approach. The reduced systems take the form of stochastic differential equations involving random coefficients that convey memory effects. The theory is illustrated on a stochastic Burgers-type equation.

Includes supplementary material: sn.pub/extras

Inhalt
General Introduction.- Preliminaries.- Invariant Manifolds.- Pullback Characterization of Approximating, and Parameterizing Manifolds.- Non-Markovian Stochastic Reduced Equations.- On-Markovian Stochastic Reduced Equations on the Fly.- Proof of Lemma 5.1.-References.- Index.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319125190
    • Sprache Englisch
    • Auflage 2015
    • Größe H235mm x B155mm x T9mm
    • Jahr 2015
    • EAN 9783319125190
    • Format Kartonierter Einband
    • ISBN 3319125192
    • Veröffentlichung 14.01.2015
    • Titel Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations
    • Autor Mickaël D. Chekroun , Shouhong Wang , Honghu Liu
    • Untertitel Stochastic Manifolds for Nonlinear SPDEs II
    • Gewicht 236g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 148
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470