Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations
Details
In this second volume, a general approach is developed to provide approximate parameterizations of the "small" scales by the "large" ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs), which are stochastic manifolds that improve, for a given realization of the noise, in mean square error the partial knowledge of the full SPDE solution when compared to its projection onto some resolved modes. Backward-forward systems are designed to give access to such PMs in practice. The key idea consists of representing the modes with high wave numbers as a pullback limit depending on the time-history of the modes with low wave numbers. Non-Markovian stochastic reduced systems are then derived based on such a PM approach. The reduced systems take the form of stochastic differential equations involving random coefficients that convey memory effects. The theory is illustrated on a stochastic Burgers-type equation.
Includes supplementary material: sn.pub/extras
Inhalt
General Introduction.- Preliminaries.- Invariant Manifolds.- Pullback Characterization of Approximating, and Parameterizing Manifolds.- Non-Markovian Stochastic Reduced Equations.- On-Markovian Stochastic Reduced Equations on the Fly.- Proof of Lemma 5.1.-References.- Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319125190
- Sprache Englisch
- Auflage 2015
- Größe H235mm x B155mm x T9mm
- Jahr 2015
- EAN 9783319125190
- Format Kartonierter Einband
- ISBN 3319125192
- Veröffentlichung 14.01.2015
- Titel Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations
- Autor Mickaël D. Chekroun , Shouhong Wang , Honghu Liu
- Untertitel Stochastic Manifolds for Nonlinear SPDEs II
- Gewicht 236g
- Herausgeber Springer International Publishing
- Anzahl Seiten 148
- Lesemotiv Verstehen
- Genre Mathematik