Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Stochastic Porous Media Equations
Details
Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found.
The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model".
The book will be of interest to PhD students and researchers in mathematics, physics and biology.
This is the first book on stochastic porous media equations Concentrates on essential points, including existence, uniqueness, ergodicity and finite time extinction results Presents the state of the art of the subject in a concise, but reasonably self-contained way Includes both the slow and fast diffusion case, but also the critical case, modeling self-organized criticality
Inhalt
Foreword.- Preface.- Introduction.- Equations with Lipschitz nonlinearities.- Equations with maximal monotone nonlinearities.- Variational approach to stochastic porous media equations.- L1-based approach to existence theory for stochastic porous media equations.- The stochastic porous media equations in Rd.- Transition semigroups and ergodicity of invariant measures.- Kolmogorov equations.- A Two analytical inequalities.- Bibliography.- Glossary.- Translator's note.- Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319410685
- Lesemotiv Verstehen
- Genre Maths
- Auflage 1st edition 2016
- Anzahl Seiten 216
- Herausgeber Springer International Publishing
- Größe H235mm x B155mm x T12mm
- Jahr 2016
- EAN 9783319410685
- Format Kartonierter Einband
- ISBN 3319410687
- Veröffentlichung 01.10.2016
- Titel Stochastic Porous Media Equations
- Autor Viorel Barbu , Michael Röckner , Giuseppe Da Prato
- Untertitel Lecture Notes in Mathematics 2163
- Gewicht 335g
- Sprache Englisch