Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Stochastic Spectral Theory for Selfadjoint Feller Operators
Details
A beautiful interplay between probability theory (Markov processes, martingale theory) on the one hand and operator and spectral theory on the other yields a uniform treatment of several kinds of Hamiltonians such as the Laplace operator, relativistic Hamiltonian, Laplace-Beltrami operator, and generators of Ornstein-Uhlenbeck processes. For such operators regular and singular perturbations of order zero and their spectral properties are investigated.
A complete treatment of the Feynman-Kac formula is given. The theory is applied to such topics as compactness or trace class properties of differences of Feynman-Kac semigroups, preservation of absolutely continuous and/or essential spectra and completeness of scattering systems.
The unified approach provides a new viewpoint of and a deeper insight into the subject. The book is aimed at advanced students and researchers in mathematical physics and mathematics with an interest in quantum physics, scattering theory, heat equation, operator theory, probability theory and spectral theory.
Autorentext
Dipl.-Kaufmann Michael Demuth ist Geschäftsführer der Vermögensberatungsgesellschaft Creative Capital GmbH.
Inhalt
1 Basic Assumptions of Stochastic Spectral Analysis:Free Feller Operators.- A Introduction.- B Assumptions and Free Feller Generators.- C Examples.- D Heat kernels.- E Summary of Schrödinger semigroup theory.- 2 Perturbations of Free Feller Operators.- The framework of stochastic spectral analysis.- A Regular perturbations.- B Integral kernels, martingales, pinned measures.- C Singular perturbations.- 3 Proof of Continuity and Symmetry of Feynman-Kac Kernels.- 4 Resolvent and Semigroup Differences for Feller Operators: Operator Norms.- A Regular perturbations.- B Singular perturbations.- 5 Hilbert-Schmidt Properties of Resolvent and Semigroup Differences.- A Regular perturbations.- B Singular perturbations.- 6 Trace Class Properties of Semigroup Differences.- A General trace class criteria.- B Regular perturbations.- C Singular perturbations.- 7 Convergence of Resolvent Differences.- 8 Spectral Properties of Self-adjoint Feller Operators.- A Qualitative spectral results.- B Quantitative estimates for regular potentials.- C Quantitative estimates for singular potentials in terms of the weighted Laplace transform of the occupation time (for large coupling parameters).- Appendix A Spectral Theory.- Appendix B Semigroup Theory.- Appendix C Markov Processes, Martingales and Stopping Times.- Appendix D Dirichlet Kernels, Harmonic Measures, Capacities.- Appendix E Dini's Lemma, Scheffé's Theorem, Monotone Class Theorem.- References.- Index of Symbols.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783034895774
- Auflage Softcover reprint of the original 1st ed. 2000
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H235mm x B155mm x T26mm
- Jahr 2012
- EAN 9783034895774
- Format Kartonierter Einband
- ISBN 3034895771
- Veröffentlichung 23.10.2012
- Titel Stochastic Spectral Theory for Selfadjoint Feller Operators
- Autor Michael Demuth , Jan A. van Casteren
- Untertitel A Functional Integration Approach
- Gewicht 721g
- Herausgeber Birkhäuser
- Anzahl Seiten 480