STOCK PRICE PREDICTION USING TIME SERIES

CHF 50.70
Auf Lager
SKU
6MDQOA6N0V1
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

The ARIMA model and the EXPONENTIAL SMOOTHING model for stock price prediction were given in this book. Each algorithm identifies the stock data set of all five institutions, according to the evaluations of these two models. The ARIMA model test results showed that it can reliably predict stock prices in the short term. This can lead to beneficial investment decisions for stock market speculators. The ARIMA model may be ready to compete with other short-term prediction models based on the findings obtained. A wide range of frequency values can be used using exponential smoothing. The Exponential smoothing approach was chosen for a single time series that followed a pattern in terms of order selection. There are many well-known time series techniques in the ARIMA. The design section of ARIMA was critical, delivering a nearly straight line.

Autorentext

Il Dr. K Sateesh Kumar lavora come professore assistente presso lo SNIST di Hyderabad. Le sue aree di interesse sono l'elaborazione digitale delle immagini, il telerilevamento e l'apprendimento automatico, ecc. Ha diverse pubblicazioni internazionali in riviste e conferenze rinomate.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786206781806
    • Genre Maths
    • Anzahl Seiten 68
    • Herausgeber LAP LAMBERT Academic Publishing
    • Größe H220mm x B150mm x T5mm
    • Jahr 2023
    • EAN 9786206781806
    • Format Kartonierter Einband
    • ISBN 6206781801
    • Veröffentlichung 05.09.2023
    • Titel STOCK PRICE PREDICTION USING TIME SERIES
    • Autor Kanagala Sateesh Kumar
    • Untertitel DE
    • Gewicht 119g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470