Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Stream Data Mining: Algorithms and Their Probabilistic Properties
Details
Presents a unique approach to stream data mining
Contrary to the vast majority of previous approaches, mainly based on some heuristics, this book shows methods and algorithms which are mathematically justified
Designed for a professional audience composed of researchers and practitioners dealing with stream data (telecommunication, banking, sensor networks)
Presents a unique and innovative approach to stream data mining Unlike the vast majority of previous approaches, which are largely based on heuristics, it highlights methods and algorithms that are mathematically justified Is intended for a professional audience composed of researchers and practitioners who deal with stream data (e.g. in telecommunication, banking, and sensor networks)
Zusammenfassung
Presents a unique approach to stream data mining
Contrary to the vast majority of previous approaches, mainly based on some heuristics, this book shows methods and algorithms which are mathematically justified
Designed for a professional audience composed of researchers and practitioners dealing with stream data (telecommunication, banking, sensor networks)
Inhalt
Introduction and Overview of the Main Results of the Book.- Basic concepts of data stream mining.- Decision Trees in Data Stream Mining.- Splitting Criteria based on the McDiarmid's Theorem.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030139612
- Auflage 1st edition 2020
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H241mm x B160mm x T24mm
- Jahr 2019
- EAN 9783030139612
- Format Fester Einband
- ISBN 3030139611
- Veröffentlichung 26.03.2019
- Titel Stream Data Mining: Algorithms and Their Probabilistic Properties
- Autor Leszek Rutkowski , Piotr Duda , Maciej Jaworski
- Untertitel Studies in Big Data 56
- Gewicht 676g
- Herausgeber Springer International Publishing
- Anzahl Seiten 340