Structure of Sets with Small Sumset and Applications

CHF 61.80
Auf Lager
SKU
JH3APB8DSJD
Stock 1 Verfügbar
Geliefert zwischen Di., 23.09.2025 und Mi., 24.09.2025

Details

The famous (3k - 4)-Theorem of Freiman states that if the doubling A+A of a set A of coprime integers satisfies A + A 3|A| - 4, then A is an interval with at most |A| - 3 holes. It occurs, that sets with the same number of holes do not necessarily have doublings of the same size. It depends on the position of the holes. It was the main objective of this master thesis to determine the position of the holes for sets with small doubling. The answer to this question was given recently by Freiman and in here it is generalized to the case with di erent summands. In the main result, it is proved that if A and B are sets with same diameter and small sumset, then A + B contains an interval of length at least half the total length of A + B. If x is a hole of A + B in the left of the interval, then x is a hole of both A an B, and if it is a hole at the right side of the interval, then x - l is a hole of A and B. Applications of this results are also presented, concerning difference sets, sum-free sets and the Frobenius problem.

Autorentext

Itziar Bardaji obtained her master's degree in appliedmathematics, specialized in discrete mathematics, at UniversitatPolitècnica de Catalunya, in 2008. She continued her research atthe Institut de Robòtica i Informàtica Industrial at Barcelonafor a year and actually she is an associate professor atUniversitat Politècnica de Catalunya.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Gewicht 131g
    • Untertitel Applications to difference sets, sum-free sets and the Frobenius problem
    • Autor Itziar Bardaji Goikoetxea
    • Titel Structure of Sets with Small Sumset and Applications
    • Veröffentlichung 20.02.2011
    • ISBN 3843383278
    • Format Kartonierter Einband
    • EAN 9783843383271
    • Jahr 2011
    • Größe H220mm x B150mm x T5mm
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 76
    • GTIN 09783843383271

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.