Structured Topic Models

CHF 78.70
Auf Lager
SKU
R4KV7U2QT4L
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 08.10.2025 und Do., 09.10.2025

Details

The abundance of textual data in the information age poses an immense challenge for us: how to perform large-scale inference to understand and utilize this overwhelming amount of information. We develop effective and efficient statistical topic models for massive text collections by taking care of extra information from other modalities in addition to the text itself. Text documents are not just text, for example, research papers have author information, email messages contain social sender-recipient links, legislative resolutions are recorded with votes, and so on. These kinds of additional information are naturally interleaved with text. Most of the previous work, however, pay attention to only one modality at a time, and ignore the others. We present a series of probabilistic topic models to show how we can bridge multiple modalities of information, in a united fashion. Interestingly, joint inference over multiple modalities leads to many findings that can not be discovered from just one modality alone, which are clear evidence that we can better understand and utilize massive text collections when additional modalities are modeled jointly with text.

Autorentext

Dr. Xuerui Wang is a Scientist at Yahoo! Labs, working on machine learning, topic models, social network analysis and online advertising. Dr. Andrew McCallum is an Associate Professor at University of Massachusetts, working on machine learning, natural language processing and information extraction.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783639205572
    • Sprache Englisch
    • Größe H7mm x B220mm x T150mm
    • Jahr 2009
    • EAN 9783639205572
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-639-20557-2
    • Titel Structured Topic Models
    • Autor Xuerui Wang
    • Untertitel Jointly Modeling Text with Its Accompanying Modalities
    • Gewicht 187g
    • Herausgeber VDM Verlag
    • Anzahl Seiten 128
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.