Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Sub-Riemannian Manifold
CHF 49.55
Auf Lager
SKU
U2DRQVN61PQ
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025
Details
High Quality Content by WIKIPEDIA articles! In mathematics, a sub-Riemannian manifold is a certain type of generalization of a Riemannian manifold. Roughly speaking, to measure distances in a sub-Riemannian manifold, you are allowed to go only along curves tangent to so-called horizontal subspaces. Sub-Riemannian manifolds (and so, a fortiori, Riemannian manifolds) carry a natural intrinsic metric called the metric of Carnot?Carathéodory. The Hausdorff dimension of such metric spaces is always an integer and larger than its topological dimension (unless it is actually a Riemannian manifold). Sub-Riemannian manifolds often occur in the study of constrained systems in classical mechanics, such as the motion of vehicles on a surface, the motion of robot arms, and the orbital dynamics of satellites. Geometric quantities such as the Berry phase may be understood in the language of sub-Riemannian geometry. The Heisenberg group, important to quantum mechanics, carries a natural sub-Riemannian structure.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130518806
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786130518806
- Format Fachbuch
- Titel Sub-Riemannian Manifold
- Herausgeber Betascript Publishing
- Anzahl Seiten 104
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung