Sylvester's Criterion
CHF 56.75
Auf Lager
SKU
R9R4J5CJK9P
Geliefert zwischen Fr., 26.09.2025 und Mo., 29.09.2025
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, Sylvester''s criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix is positive-definite. It is named after James Joseph Sylvester.Sylvester''s criterion states that a Hermitian matrix M is positive-definite if and only if all the following matrices have a positive determinant:The proof is only for nonsingular Hermitian matrix with coefficients in Rnxn, therefore only for nonsingular real-symmetric matricesStatement III: If the real-symmetric matrix A is positive definite then A possess factorization of the form A=BTB, where B is nonsingular (Theorem I), the expression A=BTB implies thah A possess factorization of the form A=RTR (Statement II), therefore all the leading principal minors of A are positive (Statement I).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131234507
- Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
- Größe H220mm x B220mm
- EAN 9786131234507
- Format Fachbuch
- Titel Sylvester's Criterion
- Herausgeber Betascript Publishing
- Anzahl Seiten 128
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung