Symmetric Models, Singular Cardinal Patterns, and Indiscernibles

CHF 88.15
Auf Lager
SKU
S7UEKQNUOK6
Stock 1 Verfügbar
Geliefert zwischen Mo., 22.09.2025 und Di., 23.09.2025

Details

This thesis is on the topic of set theory and in particular large cardinal axioms, singular cardinal patterns, and model theoretic principles in models of set theory without the axiom of choice (ZF). A standardised setup for the technique of our main tool, symmetric forcing, is established, in order to describe models that satisfy the approximation lemma. Sets of ordinals in such models are included in some model of set theory with the axiom of choice (ZFC). This enables the partial usage of previous knowledge about models of ZFC in the proofs. Most of the models are constructed using large cardinal strength and have cardinals with large cardinal properties. With the construction of such models it is shown that if we drop the axiom of choice from our requirements and assume a certain amount of large cardinal strength, several patterns of singular cardinals are possible and model theoretic properties such as higher Chang conjectures become much weaker in consistency strength. This thesis is written in a didactic style, in the hope that it will be useful for other researchers who want to use symmetric forcing with large cardinals for consistency strength studies.

Autorentext

Born and raised in Thessaloniki, graduated from the mathematics department of the Aristotle University of Thessaloniki in 2003. Became a M.Sc. in Logic at the ILLC (University of Amsterdam) in 2005 with a thesis on models of set theory without the axiom of choice. Earned the title of Dr.rer.nat. from the University of Bonn in 2011 with this thesis.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Untertitel Infinitary combinatorics without the axiom of choice
    • Autor Ioanna Matilde Dimitriou
    • Titel Symmetric Models, Singular Cardinal Patterns, and Indiscernibles
    • Veröffentlichung 11.09.2012
    • ISBN 3838133005
    • Format Kartonierter Einband
    • EAN 9783838133003
    • Jahr 2012
    • Größe H220mm x B150mm x T8mm
    • Gewicht 215g
    • Herausgeber Südwestdeutscher Verlag für Hochschulschriften
    • Anzahl Seiten 132
    • Auflage Aufl.
    • GTIN 09783838133003

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.