Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Symmetric Polynomial
CHF 49.55
Auf Lager
SKU
HQ4C3EH61TT
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025
Details
High Quality Content by WIKIPEDIA articles! In mathematics, a symmetric polynomial is a polynomial P(X1, X2, ?, Xn) in n variables, such that if any of the variables are interchanged, one obtains the same polynomial. Formally, P is a symmetric polynomial, if for any permutation ? of the subscripts 1, 2, ..., n one has P(X?(1), X?(2), ?, X?(n)) = P(X1, X2, ?, Xn). Symmetric polynomials arise naturally in the study of the relation between the roots of a polynomial in one variable and its coefficients, since the coefficients can be given by polynomial expressions in the roots, and all roots play a similar role in this setting. From this point of view the elementary symmetric polynomials are the most fundamental symmetric polynomials. A theorem states that any symmetric polynomial can be expressed in terms of elementary symmetric polynomials, which implies that every symmetric polynomial expression in the roots of a monic polynomial can alternatively be given as a polynomial expression in the coefficients of the polynomial.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130357467
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B150mm x T7mm
- Jahr 2010
- EAN 9786130357467
- Format Kartonierter Einband
- ISBN 978-613-0-35746-7
- Titel Symmetric Polynomial
- Untertitel Mathematics, Polynomial Ring, Permutation, Elementary Symmetric Polynomial, Polynomial Expression, Polynomial, Complete Homogeneous Symmetric Polynomial, Representation Theory
- Gewicht 185g
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 112
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung