Symmetric Polynomial

CHF 53.20
Auf Lager
SKU
HQ4C3EH61TT
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 08.10.2025 und Do., 09.10.2025

Details

High Quality Content by WIKIPEDIA articles! In mathematics, a symmetric polynomial is a polynomial P(X1, X2, ?, Xn) in n variables, such that if any of the variables are interchanged, one obtains the same polynomial. Formally, P is a symmetric polynomial, if for any permutation ? of the subscripts 1, 2, ..., n one has P(X?(1), X?(2), ?, X?(n)) = P(X1, X2, ?, Xn). Symmetric polynomials arise naturally in the study of the relation between the roots of a polynomial in one variable and its coefficients, since the coefficients can be given by polynomial expressions in the roots, and all roots play a similar role in this setting. From this point of view the elementary symmetric polynomials are the most fundamental symmetric polynomials. A theorem states that any symmetric polynomial can be expressed in terms of elementary symmetric polynomials, which implies that every symmetric polynomial expression in the roots of a monic polynomial can alternatively be given as a polynomial expression in the coefficients of the polynomial.
Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130357467
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Größe H220mm x B150mm x T7mm
    • Jahr 2010
    • EAN 9786130357467
    • Format Kartonierter Einband
    • ISBN 978-613-0-35746-7
    • Titel Symmetric Polynomial
    • Untertitel Mathematics, Polynomial Ring, Permutation, Elementary Symmetric Polynomial, Polynomial Expression, Polynomial, Complete Homogeneous Symmetric Polynomial, Representation Theory
    • Gewicht 185g
    • Herausgeber VDM Verlag Dr. Müller e.K.
    • Anzahl Seiten 112
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.