Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Tangent Cone
CHF 49.55
Auf Lager
SKU
6JT7BOR2SH7
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025
Details
High Quality Content by WIKIPEDIA articles! In geometry, the tangent cone is a generalization of the notion of the tangent space to a manifold to the case of certain spaces with singularities. Let K be a closed convex subset of a real vector space V and K be the boundary of K. The solid tangent cone to K at a point x K is the closure of the cone formed by all half-lines (or rays) emanating from x and intersecting K in at least one point y distinct from x. It is a convex cone in V and can also be defined as the intersection of the closed half-spaces of V containing K and bounded by the supporting hyperplanes of K at x. The boundary TK of the solid tangent cone is the tangent cone to K and K at x. If this is an affine subspace of V then the point x is called a smooth point of K and K is said to be differentiable at x and TK is the ordinary tangent space to K at x.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131157172
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131157172
- Format Fachbuch
- Titel Tangent Cone
- Herausgeber Betascript Publishing
- Anzahl Seiten 124
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung