Tangential Angle

CHF 74.05
Auf Lager
SKU
6PBMJRB3SH1
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

High Quality Content by WIKIPEDIA articles! In geometry, the tangential angle of a curve in the Cartesian plane, at a specific point, is the angle between the tangent line to the curve at the given point and the x-axis. (Note, some authors define the angle as the deviation from the direction of the curve at some fixed starting point. This is equivalent to the definition given here by the addition of a constant to the angle or by rotating the curve). If a curve is given parametrically by (x(t), y(t)) then the tangential angle varphi at t is defined (up to a multiple of 2 ) by frac{(x'(t), y'(t))}{ x'(t), y'(t) } = (cos varphi, sin varphi). Thus the tangential angle specifies the direction of the velocity vector (x'(t), y'(t)) while the speed specifies its magnitude. The vector frac{(x'(t), y'(t))}{ x'(t), y'(t) } is called the unit tangent vector, so an equivalent definition is that the tangential angle at t is the angle varphi such that (cos varphi, sin varphi) is the unit tangent vector at t. If the curve is parameterized by arc length s, so x'(s), y'(s) = 1, then the definition simplifies to (x'(s), y'(s)) = (cos varphi, sin varphi).

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131156847
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131156847
    • Format Fachbuch
    • Titel Tangential Angle
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 224
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470