Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Tangential Angle
CHF 74.05
Auf Lager
SKU
6PBMJRB3SH1
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025
Details
High Quality Content by WIKIPEDIA articles! In geometry, the tangential angle of a curve in the Cartesian plane, at a specific point, is the angle between the tangent line to the curve at the given point and the x-axis. (Note, some authors define the angle as the deviation from the direction of the curve at some fixed starting point. This is equivalent to the definition given here by the addition of a constant to the angle or by rotating the curve). If a curve is given parametrically by (x(t), y(t)) then the tangential angle varphi at t is defined (up to a multiple of 2 ) by frac{(x'(t), y'(t))}{ x'(t), y'(t) } = (cos varphi, sin varphi). Thus the tangential angle specifies the direction of the velocity vector (x'(t), y'(t)) while the speed specifies its magnitude. The vector frac{(x'(t), y'(t))}{ x'(t), y'(t) } is called the unit tangent vector, so an equivalent definition is that the tangential angle at t is the angle varphi such that (cos varphi, sin varphi) is the unit tangent vector at t. If the curve is parameterized by arc length s, so x'(s), y'(s) = 1, then the definition simplifies to (x'(s), y'(s)) = (cos varphi, sin varphi).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131156847
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131156847
- Format Fachbuch
- Titel Tangential Angle
- Herausgeber Betascript Publishing
- Anzahl Seiten 224
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung