Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Tate Conjecture
CHF 43.15
Auf Lager
SKU
BLR2KJI8RDS
Geliefert zwischen Do., 22.01.2026 und Fr., 23.01.2026
Details
High Quality Content by WIKIPEDIA articles! In mathematics, the Tate conjecture is a 1963 conjecture of John Tate linking algebraic geometry, and more specifically the identification of algebraic cycles, with Galois modules coming from étale cohomology. It is unsolved in the general case, as of 2009[update], and, like the Hodge conjecture to which it is related at the level of some important analogies, it is generally taken to be one of the major problems in the field. Tate's original statement runs as follows. Let V be a smooth algebraic variety over a field k, which is finitely-generated over its prime field. Let G be the absolute Galois group of k. Fix a prime number l. Write H (V) for the l-adic cohomology (coefficients in the l-adic integers, scalars then extended to the l-adic numbers) of the base extension of V to the given algebraic closure of k; these groups are G-modules. Consider.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131172397
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131172397
- Format Fachbuch
- Titel Tate Conjecture
- Herausgeber Betascript Publishing
- Anzahl Seiten 88
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung