Tate Conjecture

CHF 43.15
Auf Lager
SKU
BLR2KJI8RDS
Stock 1 Verfügbar
Geliefert zwischen Do., 22.01.2026 und Fr., 23.01.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, the Tate conjecture is a 1963 conjecture of John Tate linking algebraic geometry, and more specifically the identification of algebraic cycles, with Galois modules coming from étale cohomology. It is unsolved in the general case, as of 2009[update], and, like the Hodge conjecture to which it is related at the level of some important analogies, it is generally taken to be one of the major problems in the field. Tate's original statement runs as follows. Let V be a smooth algebraic variety over a field k, which is finitely-generated over its prime field. Let G be the absolute Galois group of k. Fix a prime number l. Write H (V) for the l-adic cohomology (coefficients in the l-adic integers, scalars then extended to the l-adic numbers) of the base extension of V to the given algebraic closure of k; these groups are G-modules. Consider.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131172397
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131172397
    • Format Fachbuch
    • Titel Tate Conjecture
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 88
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470