Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Taxicab Geometry
CHF 43.10
Auf Lager
SKU
HF70BNR2EV8
Geliefert zwischen Mo., 26.01.2026 und Di., 27.01.2026
Details
High Quality Content by WIKIPEDIA articles! Taxicab geometry, considered by Hermann Minkowski in the 19th century, is a form of geometry in which the usual metric of Euclidean geometry is replaced by a new metric in which the distance between two points is the sum of the (absolute) differences of their coordinates. The taxicab metric is also known as rectilinear distance, L1 distance or ell1 norm, city block distance, Manhattan distance, or Manhattan length, with corresponding variations in the name of the geometry. The latter names allude to the grid layout of most streets on the island of Manhattan, which causes the shortest path a car could take between two points in the city to have length equal to the points' distance in taxicab geometry.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130320133
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B150mm x T6mm
- Jahr 2010
- EAN 9786130320133
- Format Kartonierter Einband
- ISBN 978-613-0-32013-3
- Titel Taxicab Geometry
- Untertitel Hermann Minkowski, Geometry, Metric Space, Euclidean Geometry, Distance, Commissioners' Plan of 1811, Cartesian Coordinate System, Chebyshev Distance, Injective Metric Space
- Gewicht 159g
- Herausgeber Betascript Publishers
- Anzahl Seiten 96
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung