Technical Analysis for Algorithmic Pattern Recognition

CHF 165.65
Auf Lager
SKU
71SLK4K4LHO
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

The main purpose of this book is to resolve deficiencies and limitations that currently exist when using Technical Analysis (TA). Particularly, TA is being used either by academics as an economic test of the weak-form Efficient Market Hypothesis (EMH) or by practitioners as a main or supplementary tool for deriving trading signals. This book approaches TA in a systematic way utilizing all the available estimation theory and tests. This is achieved through the developing of novel rule-based pattern recognizers, and the implementation of statistical tests for assessing the importance of realized returns. More emphasis is given to technical patterns where subjectivity in their identification process is apparent. Our proposed methodology is based on the algorithmic and thus unbiased pattern recognition. The unified methodological framework presented in this book can serve as a benchmark for both future academic studies that test the null hypothesis of the weak-form EMH and for practitioners that want to embed TA within their trading/investment decision making processes.

Proposes unbiased, novel rule-based techniques for recognizing technical patterns Implements a statistical framework for assessing realizing returns Presents a unified methodological framework ? Includes supplementary material: sn.pub/extras

Autorentext

Prodromos E. Tsinaslanidis, Ph.D., is Lecturer of Finance in the Business School at the Canterbury Christ Church University. Dr. Tsinaslanidis' research interests include technical analysis, pattern recognition, efficient market hypothesis and design and assessment of investment and trading strategies.

Achilleas D. Zapranis, Ph.D., is Professor of Finance in the Department of Accounting and Finance at the University of Macedonia, where he is also Rector. In addition, Dr. Zapranis is a member of the Board of Directors of Thessaloniki's Innovation Zone.


Inhalt
Technical Analysis.- Preprocessing Procedures.- Assessing the Predictive Performance of Technical Analysis.- Horizontal Patterns.- Zigzag Patterns.- Circular Patterns.- Technical Indicators.- A Statistical Assessment.- Dynamic Time Warping for Pattern Recognition.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319236353
    • Genre Business Administration
    • Auflage 1st edition 2016
    • Sprache Englisch
    • Lesemotiv Verstehen
    • Anzahl Seiten 220
    • Herausgeber Springer International Publishing
    • Größe H241mm x B160mm x T18mm
    • Jahr 2015
    • EAN 9783319236353
    • Format Fester Einband
    • ISBN 3319236350
    • Veröffentlichung 06.11.2015
    • Titel Technical Analysis for Algorithmic Pattern Recognition
    • Autor Achilleas D. Zapranis , Prodromos E. Tsinaslanidis
    • Gewicht 500g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470