Tensor (intrinsic definition)

CHF 43.30
Auf Lager
SKU
9SV0BR29SFQ
Stock 1 Verfügbar
Geliefert zwischen Do., 22.01.2026 und Fr., 23.01.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, the modern component-free approach to the theory of a tensor views a tensor as an abstract object, expressing some definite type of multi-linear concept. Their well-known properties can be derived from their definitions, as linear maps or more generally; and the rules for manipulations of tensors arise as an extension of linear algebra to multilinear algebra. In differential geometry an intrinsic geometric statement may be described by a tensor field on a manifold, and then doesn't need to make reference to coordinates at all. The same is true in general relativity, of tensor fields describing a physical property. The component-free approach is also used heavily in abstract algebra and homological algebra, where tensors arise naturally.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130349806
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Größe H221mm x B149mm x T13mm
    • Jahr 2010
    • EAN 9786130349806
    • Format Kartonierter Einband
    • ISBN 978-613-0-34980-6
    • Titel Tensor (intrinsic definition)
    • Untertitel Mathematics, Abstract Object, Linear Algebra, Multilinear Algebra, Homological Algebra, Physical Property, Tensor Product, Rank (linear algebra), Differentiable Manifold
    • Gewicht 147g
    • Herausgeber Betascript Publishers
    • Anzahl Seiten 88
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470