Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Ternary Relation
CHF 43.20
Auf Lager
SKU
2ALD63RG0AG
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025
Details
High Quality Content by WIKIPEDIA articles! High Quality Content by WIKIPEDIA articles! In mathematics, a ternary relation or triadic relation is a finitary relation in which the number of places in the relation is three. Ternary relations may also be referred to as 3-adic, 3-ary, 3-dimensional, or 3-place. Just as a binary relation is formally defined as a set of pairs, i.e. a subset of the Cartesian product A × B of some sets A and B, so a ternary relation is a set of triples, forming a subset of the Cartesian product A × B × C of three sets A, B and C. A function : A × B C in two variables, taking values in two sets A and B, respectively, is formally a function that associates to every pair (a,b) in A × B an element (a, b) in C. Therefore its graph consists of pairs of the form ((a, b), (a, b)). Such pairs in which the first element is itself a pair are often identified with triples. This makes the graph of a ternary relation between A, B and C, consisting of all triples (a, b, (a, b)), for all a in A and b in B.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131141157
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131141157
- Format Fachbuch
- Titel Ternary Relation
- Herausgeber Betascript Publishing
- Anzahl Seiten 80
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung