Test Data Engineering

CHF 190.95
Auf Lager
SKU
8U5469CN89A
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This is the first technical book that considers tests as public tools and examines how to engineer and process test data, extract the structure within the data to be visualized, and thereby make test results useful for students, teachers, and the society. The author does not differentiate test data analysis from data engineering and information visualization. This monograph introduces the following methods of engineering or processing test data, including the latest machine learning techniques: classical test theory (CTT), item response theory (IRT), latent class analysis (LCA), latent rank analysis (LRA), biclustering (co-clustering), and Bayesian network model (BNM). CTT and IRT are methods for analyzing test data and evaluating students' abilities on a continuous scale. LCA and LRA assess examinees by classifying them into nominal and ordinal clusters, respectively, where the adequate number of clusters is estimated from the data. Biclustering classifies examinees into groups (latent clusters) while classifying items into fields (factors). Particularly, the infinite relational model discussed in this book is a biclustering method feasible under the condition that neither the number of groups nor the number of fields is known beforehand. Additionally, the local dependence LRA, local dependence biclustering, and bicluster network model are methods that search and visualize inter-item (or inter-field) network structure using the mechanism of BNM. As this book offers a new perspective on test data analysis methods, it is certain to widen readers' perspective on test data analysis.

Demonstrates how test data can be engineered to transform it into information useful for examinees and teachers Shows how information underlying the test data can be visualized after structuring and extracting it Expands readers' field of vision in analyzing test data by demonstrating various useful statistical models

Autorentext
Kojiro Shojima is Associate Professor at The National Center for University Entrance Examinations. He is a psychometrician living in Tokyo with his (lovely) wife and two (angelic) daughters.

Inhalt
Concept of Test Data Engineering.- Test Data and Item Analysis.- Classical Test Theory.- Item Response Theory.- Latent Class Analysis.- Biclustering.- Bayesian Network Model.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789811699856
    • Lesemotiv Verstehen
    • Genre Business, Finance & Law
    • Auflage 1st edition 2022
    • Sprache Englisch
    • Anzahl Seiten 604
    • Herausgeber Springer Nature Singapore
    • Gewicht 1062g
    • Größe H241mm x B160mm x T38mm
    • Jahr 2022
    • EAN 9789811699856
    • Format Fester Einband
    • ISBN 9811699852
    • Veröffentlichung 14.08.2022
    • Titel Test Data Engineering
    • Autor Kojiro Shojima
    • Untertitel Latent Rank Analysis, Biclustering, and Bayesian Network

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470