Text Dependent Speaker Recognition using Deep Neural Networks

CHF 47.55
Auf Lager
SKU
S2SJK0CCGG5
Stock 1 Verfügbar
Geliefert zwischen Mi., 21.01.2026 und Do., 22.01.2026

Details

Speaker Recognition is used for identification of a person depending on the characteristics contained in the speech signal. In this paper we propose the use of Deep Neural Network (DNN) for text dependent speaker Recognition system (SRS). Mel Frequency Cepstral Coefficients (MFCC) and Auto-encoder (Butterfly Structure Neural Network) are used to extract the features of speech signal at the initial stage. The previously obtained coefficients are then used to train the DNN to later classify the speakers. DNN can be directly used to extract features and classify speakers but the MFCC and Auto-encoder are used initially for data compression and maximum number of feature extraction thus aiming to get better efficiency and faster results.

Autorentext

O Dr. Anilkumar Suthar é Guia e Director do L J Instituto de Engenharia e Tecnologia. Prarthana Patel é uma estudante de pós-graduação em Electrónica e Comunicação (Engenharia de Sistemas de Comunicação) no Instituto de Engenharia e Tecnologia L J.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783659921711
    • Genre Elektrotechnik
    • Editor K. Kansara
    • Sprache Englisch
    • Anzahl Seiten 52
    • Größe H220mm x B150mm x T4mm
    • Jahr 2018
    • EAN 9783659921711
    • Format Kartonierter Einband
    • ISBN 3659921718
    • Veröffentlichung 05.09.2018
    • Titel Text Dependent Speaker Recognition using Deep Neural Networks
    • Autor Anilkumar Suthar
    • Gewicht 96g
    • Herausgeber LAP LAMBERT Academic Publishing

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470