The Callias Index Formula Revisited

CHF 46.30
Auf Lager
SKU
MHF95R7UPTP
Stock 1 Verfügbar
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025

Details

These lecture notes aim at providing a purely analytical and accessible proof of the Callias index formula. In various branches of mathematics (particularly, linear and nonlinear partial differential operators, singular integral operators, etc.) and theoretical physics (e.g., nonrelativistic and relativistic quantum mechanics, condensed matter physics, and quantum field theory), there is much interest in computing Fredholm indices of certain linear partial differential operators. In the late 1970's, Constantine Callias found a formula for the Fredholm index of a particular first-order differential operator (intimately connected to a supersymmetric Dirac-type operator) additively perturbed by a potential, shedding additional light on the Fedosov-Hörmander Index Theorem. As a byproduct of our proof we also offer a glimpse at special non-Fredholm situations employing a generalized Witten index.

Offers a new, functional analytic approach to the Callias index theorem and generalises it considerably Give a very detailed history and explain the background in great detail Shows very clearly the connections with other areas throughout the manuscript Includes supplementary material: sn.pub/extras

Inhalt
Introduction.-Notational Conventions.- Functional Analytic.- On Schattenvon Neumann Classes and Trace Class.- Pointwise Estimates for Integral Kernels.- Dirac-Type.- Derivation of the Trace Formula The Trace Class Result.- Derivation of the Trace Formula Diagonal Estimates.- The Case n = 3.- The Index Theorem and Some Consequences.- Perturbation Theory for the Helmholtz Equation.- The Proof of Theorem 10.2: The Smooth Case.- The Proof of Theorem 10.2: The General Case.- A Particular Class of Non-Fredholm Operators L and Their Generalized Witten Index.- A: Construction of the Euclidean Dirac Algebra.- B: A Counterexample to [22, Lemma 5].- References.- Index.<p

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319299761
    • Lesemotiv Verstehen
    • Genre Maths
    • Auflage 1st edition 2016
    • Anzahl Seiten 204
    • Herausgeber Springer International Publishing
    • Größe H235mm x B155mm x T12mm
    • Jahr 2016
    • EAN 9783319299761
    • Format Kartonierter Einband
    • ISBN 331929976X
    • Veröffentlichung 29.06.2016
    • Titel The Callias Index Formula Revisited
    • Autor Marcus Waurick , Fritz Gesztesy
    • Untertitel Lecture Notes in Mathematics 2157
    • Gewicht 318g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470