Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
The computation of spectral representations for evolution PDE
Details
In this book the solution representations obtained from a recently developed Fokas integral method for solving boundary value problems for linear evolution PDEs are evaluate numerically. In particular, the case of the linear KdV equation is considered. The Fokas method is quite general and it is therefore of wider interest to assess its competitiveness for numerical purposes. Until now pseudospectral methods have been know to be the most accurate numerical scheme for smooth functions. To compare the two methods, the linear KdV equation is computed numerically using both, a pseudospectral method and the direct evaluation of the integral representation. The two methods are compared for accuracy and speed of the numerical computation, showing that for linear evolutionary PDEs the numerical implementation of Fokas method is much faster and more accurate than a pseudospectral method. The nonlinear KdV equation is also looked at using pseudospectral methods and a motivation for a possible hybrid method which would use both the Fokas and pseudospectral methods together is given.
Autorentext
Originally from Latvia, I have obtained BSc in computational mathematics (2006) from University of Reading and MSc in mathematics (2007). Currently I am a PhD student at University of Reading holding a grant from NERC and Met Office (to be completed in 2011).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639220247
- Sprache Englisch
- Größe H220mm x B220mm
- Jahr 2012
- EAN 9783639220247
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-22024-7
- Titel The computation of spectral representations for evolution PDE
- Autor Sanita Vetra-Carvalho
- Untertitel Theory and application
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 68
- Genre Mathematik