Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
The Cross-Entropy Method
Details
The cross-entropy (CE) method is one of the most significant developments in randomized optimization and simulation in recent years. This book explains in detail how and why the CE method works. The simplicity and versatility of the method is illustrated via a diverse collection of optimization and estimation problems. The book is aimed at a broad audience of engineers, computer scientists, mathematicians, statisticians and in general anyone, theorist and practitioner, who is interested in smart simulation, fast optimization, learning algorithms, and image processing.
A comprehensive and accessible introduction to the cross-entropy (CE) method Based on an advanced undergraduate course on the CE method, given at the Israel Institute of Technology (Technion) for the last three years Includes supplementary material: sn.pub/extras
Inhalt
1 Preliminaries.- 2 A Tutorial Introduction to the Cross-Entropy Method.- 3 Efficient Simulation via Cross-Entropy.- 4 Combinatorial Optimization via Cross-Entropy.- 5 Continuous Optimization and Modifications.- 6 Noisy Optimization with CE.- 7 Applications of CE to COPs.- 8 Applications of CE to Machine Learning.- A Example Programs.- A.1 Rare Event Simulation.- A.2 The Max-Cut Problem.- A.3 Continuous Optimization via the Normal Distribution.- A.4 FACE.- A.5 Rosenbrock.- A.6 Beta Updating.- A.7 Banana Data.- References.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781441919403
- Auflage Softcover reprint of the original 1st edition 2004
- Sprache Englisch
- Genre Anwendungs-Software
- Größe H235mm x B155mm x T18mm
- Jahr 2011
- EAN 9781441919403
- Format Kartonierter Einband
- ISBN 1441919406
- Veröffentlichung 12.12.2011
- Titel The Cross-Entropy Method
- Autor Dirk P. Kroese , Reuven Y. Rubinstein
- Untertitel A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning
- Gewicht 493g
- Herausgeber Springer New York
- Anzahl Seiten 324
- Lesemotiv Verstehen