Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
The Lattice of Subquasivarieties of a Locally Finite Quasivariety
Details
Formalizes methods for analyzing locally finite quasivarieties
Authors are leading experts in the area
Presents the basic theory of quasivarieties in an accessible manner Provides examples throughout, showing how the algorithms are applied in practice Includes appendix with recent developments and references to the literature
Autorentext
Jennifer Hyndman was a founding faculty member of the University of Northern British Columbia. There she honed her passion for teaching that led to her winning the Canadian Mathematical Society Excellence in Teaching Award. When not engrossed in research on natural duality theory or quasi-equational theory she can be found in a dance studio learning jazz, modern, and ballet choreography.J. B. Nation is professor emeritus at the University of Hawaii. His research interests include lattice theory, universal algebra, coding theory and bio-informatics. He enjoys running, refereeing soccer, and playing jazz flugelhorn.
Inhalt
Introduction and Background.- Structure of Lattices of Subquasivarieties.- Omission and Bases for Quasivarieties.- Analyzing Lq(K).- Unary Algebras with 2-element Range.- 1-Unary Algebras.- Pure Unary Relational Structures.- Problems.- Appendix A: Properties of Lattices of Subquasivarieties.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030086510
- Sprache Englisch
- Auflage Softcover reprint of the original 1st edition 2018
- Größe H235mm x B155mm x T11mm
- Jahr 2019
- EAN 9783030086510
- Format Kartonierter Einband
- ISBN 3030086518
- Veröffentlichung 10.01.2019
- Titel The Lattice of Subquasivarieties of a Locally Finite Quasivariety
- Autor J. B. Nation , Jennifer Hyndman
- Untertitel CMS Books in Mathematics
- Gewicht 283g
- Herausgeber Springer International Publishing
- Anzahl Seiten 180
- Lesemotiv Verstehen
- Genre Mathematik