The Liquid and Supercritical Fluid States of Matter

CHF 83.75
Auf Lager
SKU
LBPC54OUNBM
Stock 1 Verfügbar
Geliefert zwischen Do., 20.11.2025 und Fr., 21.11.2025

Details

This book addresses graduate students and researchers wishing to better understand the liquid and supercritical fluid states of matter, presenting a single cohesive treatment of the liquid and supercritical fluid states using the gas-like and solid-like approaches.


Autorentext

John E. Proctor is a senior lecturer in physics at the University of Salford and is head of the Materials and Physics Research Group. He specialises in condensed matter physics, particularly the study of fluids and solids under extreme pressure and temperature, principally through X-ray and neutron diffraction along with optical spectroscopy. His research is regularly published in leading international peer-reviewed journals. He completed his Ph.D. (2007) from the University of Manchester and his M.Phys. (2004) from the University of Oxford. He is one of the authors of An Introduction to Graphene and Carbon Nanotubes (CRC Press, 2017).


Inhalt

Contents

Preface...................................................................................................xi

Useful Equations and Definitions.......................................................xv

Definitions.......................................................................................... xxi

1 Some Remarks on the Gas State

1.1 Equation of State (EOS) of Real Gases................................................................ 1

1.1.1 The Van der Waals Equation................................................................. 1

1.1.2 The Virial Equation.................................................................................2

1.2 Order in the Gas State............................................................................................3

1.3 Heat Capacity of Gases......................................................................................... 4

1.3.1 How Well Does This Model Work?...................................................... 4

1.4 Vibrational Raman Spectroscopy of Gases........................................................6

1.5 Viscosity of Gases...................................................................................................8

1.6 Why Are Liquids so Difficult?............................................................................ 10

1.6.1 Molecular Dynamics (MD)................................................................. 10

1.6.2 The Fundamental EOS (Section 3.3)....................................................11

1.6.3 Treat the Fluid as Gas-Like.................................................................. 12

1.6.4 Treat the Fluid as Solid-Like................................................................ 12

References.......................................................................................................................... 13

2 The Vapour Pressure Curve and the Liquid State Close to

the Vapour Pressure Curve

2.1 Classical Versus Quantum Liquids.................................................................... 15

2.2 The Transition Across the Vapour Pressure Curve......................................... 17

2.3 The Clausius-Clapeyron Equation.....................................................................19

2.3.1 Validity of the Clausius-Clapeyron Equation.................................. 20

2.4 The Critical Point................................................................................................. 20

2.4.1 Critical Constants and the Van Der Waals

Equation of State....................................................................................25

2.5 Summary............................................................................................................... 29

References......................................................................................................................... 30

3 Equations of State for Fluids

3.1 Cubic EOS Based on the Van der Waals Equation..........................................32

3.1.1 Volume Translation of Cubic EOS..................................................... 34

3.2 The Carnahan-Starling EOS...............................................................................35

3.3 The Fundamental EOS........................................................................................ 36

3.3.1 Ideal Gas Component of the Helmholtz Function.......................... 36

3.3.2 Residual Component of the Helmholtz Function............................39

3.3.3 Fitting the Helmholtz Function to the

Experimental Data................................................................................39

3.4 Conclusions...........................................................................................................41

3.4.1 For What Fluids Is a Fundamental EOS Available?.........................41

3.4.2 How Can We Test the Validity of an EOS?........................................41

3.4.3 What Is the Best Way to Implement Your

Chosen EOS? ............................................................................................................... 44

References......................................................................................................................... 46

4 The Liquid State Close to the Melting Curve (I):

Static Properties

4.1 Density and Bulk Modulus of Fluids Close to the Melting Curve............... 47

4.1.1 Density of Fluid Ar Close to the Melting Curve.............................. 48

4.1.2 Density and Bulk Modulus of Fluid N2 Close to

the Melting Curve................................................................................ 49

4.2 Elastic Neutron and X-ray Diffraction from Liquids Close to the

Melting Curve....................................................................................................... 51

4.2.1 Distinctions Between X-ray and Neutron

Diffraction Experiments......................................................................53

4.2.2 Fourier Transform of Fluid Diffraction Data

to Obtain g (r) ....................................................................................55

4.2.3 Fourier Transform of Modified Fluid Diffraction Data

to Obtain g (r) ..................................................................................................58

4.2.4 Comparison of Diffraction Data to Simulated Fluid

Structures in Reciprocal Space............................................................61

4.2.5 Relation Between g (r), the Partition Function, Internal

Energy, and Pressure.............................................................................63

4.2.6 Relation Between g (r) and Entropy....................................................65

4.2.7 Relation Between g (r) and Co-ordination Number (CN)............. 66

4.3 Short-Range Order and Phase Transitions in Fluids Close to the

Melting Curve...................................................................................................... 67

4.3.1 Co-ordination Number....................................................................... 67

4.3.2 Liquid-Liquid Phase Transitions........................................................ 67

4.4 Equations to Fit the Melting Curve on the P,T Phase Diagram................... 69

4.5 What Happens to the Melting Curve in the High P,T Limit?........................72

4.6 Summary................................................................................................................74

References..........................................................................................................................77

5 The Liquid State Close to the Melting Curve (II):

Dynamic Properties

5.1 Phonon Theory of Liquids...................................................................................79

5.1.1 Frenkel and Maxwell Models..............................................................79

5.1.2 Pred…

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09780367549350
    • Genre Physics
    • Anzahl Seiten 300
    • Herausgeber CRC Press
    • Größe H234mm x B156mm
    • Jahr 2022
    • EAN 9780367549350
    • Format Kartonierter Einband
    • ISBN 978-0-367-54935-0
    • Veröffentlichung 29.04.2022
    • Titel The Liquid and Supercritical Fluid States of Matter
    • Autor Proctor John E.
    • Gewicht 453g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470