The Mathematics of Elections and Voting

CHF 85.30
Auf Lager
SKU
K648J2ECHNT
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This title takes an in-depth look at the mathematics in the context of voting and electoral systems, with focus on simple ballots, complex elections, fairness, approval voting, ties, fair and unfair voting, and manipulation techniques. The exposition opens with a sketch of the mathematics behind the various methods used in conducting elections. The reader is lead to a comprehensive picture of the theoretical background of mathematics and elections through an analysis of Condorcet's Principle and Arrow's Theorem of conditions in electoral fairness. Further detailed discussion of various related topics include: methods of manipulating the outcome of an election, amendments, and voting on small committees. In recent years, electoral theory has been introduced into lower-level mathematics courses, as a way to illustrate the role of mathematics in our everyday life. Few books have studied voting and elections from amore formal mathematical viewpoint. This text will be useful to those who teach lower level courses or special topics courses and aims to inspire students to understand the more advanced mathematics of the topic. The exercises in this text are ideal for upper undergraduate and early graduate students, as well as those with a keen interest in the mathematics behind voting and elections.


Contains exercises and could be used as a text for a special topics course Discuss majority and plurality voting, runoff elections and the Hare method Looks at elections where points are allocated to the candidates and the high scorer wins Includes supplementary material: sn.pub/extras

Autorentext
W. D. Wallis served as a Professor of Mathematics at Southern Illinois University, Carbondale, for 24 years up until his retirement in 2009. Before that he taught for 15 years at the University of Newcastle, Australia, and for 4 years at La Trobe University, Australia. His main areas of research have been in Combinatorial Mathematics and Graph Theory. He has also published some work in Computer Science and in Algebra. He has authored or co-authored fourteen books on Mathematics, together with some second editions, and edited nine books. He has published 268 research articles and book chapters.

Klappentext

The Mathematics of Elections and Voting takes an in-depth look at the mathematics in the context of voting and electoral systems, with focus on simple ballots, complex elections, fairness, approval voting, ties, fair and unfair voting, and manipulation techniques. The exposition opens with a sketch of the mathematics behind the various methods used in conducting elections. The reader is lead to a comprehensive picture of the theoretical background of mathematics and elections through an analysis of Condorcet's Principle and Arrow's Theorem ofconditions in electoral fairness. Further detailed discussion of various related topics include: methods of manipulating the outcome of an election, amendments, and voting on small committees.

In recent years, electoral theory has been introduced into lower-level mathematics courses, as a way to illustrate the role of mathematics in our everyday life. Few books have studied voting and elections from a more formal mathematical viewpoint. This text will be useful to those who teach lower level courses or special topics courses and aims to inspire students to understand the more advanced mathematics of the topic. The exercises in this text are ideal for upper undergraduate and early graduate students, as well as those with a keen interest in the mathematics behind voting and elections.


Inhalt
1.Introduction.- 2.Simple Elections I.- 3. Simple Elections II - Condorcet's Method.- 4. Fair Elections; Polls; Amendments.- 5. Arrow's Theorem and the Gibbard-Satterthwaite Theorem.- 6. Complex Elections.- 7. Cardinal Systems.- 8. Weighted Voting. References.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319098098
    • Sprache Englisch
    • Auflage 2014
    • Größe H235mm x B155mm x T6mm
    • Jahr 2014
    • EAN 9783319098098
    • Format Kartonierter Einband
    • ISBN 3319098098
    • Veröffentlichung 24.10.2014
    • Titel The Mathematics of Elections and Voting
    • Autor W. D. Wallis
    • Gewicht 197g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 108
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470